
Aiping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3813372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conserved Pattern and Potential Role of Recurrent Deletions in SARS-CoV-2 Evolution. Microbiology Spectrum, 2022, 10, e0219121.	1.2	9
2	Detecting Potentially Adaptive Mutations from the Parallel and Fixed Patterns in SARS-CoV-2 Evolution. Viruses, 2022, 14, 1087.	1.5	4
3	SARS-CoV-2 Continuous Genetic Divergence and Changes in Multiplex RT-PCR Detection Pattern on Positive Retesting Median 150 Days after Initial Infection. International Journal of Molecular Sciences, 2022, 23, 6254.	1.8	1
4	Prediction of the Receptorome for the Human-Infecting Virome. Virologica Sinica, 2021, 36, 133-140.	1.2	11
5	Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1297-1308.	3.2	37
6	Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Briefings in Bioinformatics, 2021, 22, 1267-1278.	3.2	26
7	The m6A methylome of SARS-CoV-2 in host cells. Cell Research, 2021, 31, 404-414.	5.7	95
8	Convergent evolution of SARS-CoV-2 in human and animals. Protein and Cell, 2021, 12, 832-835.	4.8	15
9	One year of SARS-CoV-2 evolution. Cell Host and Microbe, 2021, 29, 503-507.	5.1	60
10	Progress and Challenge in Computational Identification of Influenza Virus Reassortment. Virologica Sinica, 2021, 36, 1273-1283.	1.2	4
11	Transcriptome Analysis Reveals the Molecular Immunological Characteristics of Lesions in Patients with Halo Nevi When Compared to Stable Vitiligo, Normal Nevocytic Nevi and Cutaneous Melanoma. Journal of Inflammation Research, 2021, Volume 14, 4111-4124.	1.6	2
12	ImmuCellDB: An Indicative Database of Immune Cell Composition From Different Tissues and Disease Conditions in Mouse and Human. Frontiers in Immunology, 2021, 12, 670070.	2.2	2
13	Progress and challenge for computational quantification of tissue immune cells. Briefings in Bioinformatics, 2021, 22, .	3.2	9
14	Tissue-specific deconvolution of immune cell composition by integrating bulk and single-cell transcriptomes. Bioinformatics, 2020, 36, 819-827.	1.8	13
15	Identification of dynamic signatures associated with smokingâ€related squamous cell lung cancer and chronic obstructive pulmonary disease. Journal of Cellular and Molecular Medicine, 2020, 24, 1614-1625.	1.6	12
16	FluReassort: a database for the study of genomic reassortments among influenza viruses. Briefings in Bioinformatics, 2020, 21, 2126-2132.	3.2	9
17	Comparative Transcriptome Analysis Reveals the Intensive Early Stage Responses of Host Cells to SARS-CoV-2 Infection. Frontiers in Microbiology, 2020, 11, 593857.	1.5	62
18	ldentification of genome-wide nucleotide sites associated with mammalian virulence in influenza A viruses. Biosafety and Health, 2020, 2, 32-38.	1.2	3

AIPING WU

#	Article	IF	CITATIONS
19	Automated recommendation of the seasonal influenza vaccine strain with PREDAC. Biosafety and Health, 2020, 2, 117-119.	1.2	1
20	Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 2020, 27, 325-328.	5.1	1,860
21	Cell membrane proteins with high N-glycosylation, high expression and multiple interaction partners are preferred by mammalian viruses as receptors. Bioinformatics, 2019, 35, 723-728.	1.8	31
22	Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae in Chinese leprosy patients. Emerging Microbes and Infections, 2019, 8, 1479-1489.	3.0	16
23	Identification of Bridging Centrality in Complex Networks. IEEE Access, 2019, 7, 93123-93130.	2.6	14
24	Regulation of Early Host Immune Responses Shapes the Pathogenicity of Avian Influenza A Virus. Frontiers in Microbiology, 2019, 10, 2007.	1.5	21
25	Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses. Molecular Biology and Evolution, 2019, 36, 1172-1186.	3.5	13
26	PREDAV-H1: a user-friendly web server for predicting antigenic variants of influenza H1N1 viruses. Science China Life Sciences, 2019, 62, 426-427.	2.3	1
27	Viral diseases meet omics: Time for systems virology. Science China Life Sciences, 2018, 61, 1274-1276.	2.3	1
28	seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data. Frontiers in Immunology, 2018, 9, 1286.	2.2	75
29	Inference of immune cell composition on the expression profiles of mouse tissue. Scientific Reports, 2017, 7, 40508.	1.6	132
30	Continual Antigenic Diversification in China Leads to Global Antigenic Complexity of Avian Influenza H5N1 Viruses. Scientific Reports, 2017, 7, 43566.	1.6	21
31	cooccurNet: an R package for co-occurrence network construction and analysis. Bioinformatics, 2017, 33, 1881-1882.	1.8	4
32	Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. Infection, Genetics and Evolution, 2017, 55, 269-276.	1.0	21
33	Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human. Scientific Reports, 2017, 7, 14295.	1.6	3
34	From Mosquitos to Humans: Genetic Evolution of Zika Virus. Cell Host and Microbe, 2016, 19, 561-565.	5.1	199
35	PREDAC-H3: a user-friendly platform for antigenic surveillance of human influenza a(H3N2) virus based on hemagglutinin sequences. Bioinformatics, 2016, 32, 2526-2527.	1.8	5
36	Detection and typing of human-infecting influenza viruses in China by using a multiplex DNA biochip assay. Journal of Virological Methods, 2016, 234, 178-185.	1.0	8

AIPING WU

#	Article	IF	CITATIONS
37	Integrating computational modeling and functional assays to decipher the structure-function relationship of influenza virus PB1 protein. Scientific Reports, 2015, 4, 7192.	1.6	8
38	Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus. Scientific Reports, 2015, 5, 14171.	1.6	47
39	Network of co-mutations in Ebola virus genome predicts the disease lethality. Cell Research, 2015, 25, 753-756.	5.7	17
40	Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS. Journal of Immunology, 2015, 194, 1545-1554.	0.4	141
41	Computational analysis of antigenic epitopes of avian influenza A (H7N9) viruses. Science China Life Sciences, 2015, 58, 687-693.	2.3	15
42	PREDAC-H5: A user-friendly tool for the automated surveillance of antigenic variants for the HPAI H5N1 virus. Infection, Genetics and Evolution, 2014, 28, 62-63.	1.0	7
43	Coevolution signals capture the specific packing of secondary structures in protein architecture. Protein and Cell, 2014, 5, 480-483.	4.8	1
44	Improvement in Low-Homology Template-Based Modeling by Employing a Model Evaluation Method with Focus on Topology. PLoS ONE, 2014, 9, e89935.	1.1	10
45	Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China. Cell Host and Microbe, 2013, 14, 446-452.	5.1	141
46	A peptide derived from the Câ€ŧerminus of <scp>PB</scp> 1 inhibits influenza virus replication by interfering with viral polymerase assembly. FEBS Journal, 2013, 280, 1139-1149.	2.2	29
47	Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nature Communications, 2012, 3, 709.	5.8	88
48	Incorporation of Local Structural Preference Potential Improves Fold Recognition. PLoS ONE, 2011, 6, e17215.	1.1	13
49	Rapid Estimation of Binding Activity of Influenza Virus Hemagglutinin to Human and Avian Receptors. PLoS ONE, 2011, 6, e18664.	1.1	13
50	NCACO-score: An effective main-chain dependent scoring function for structure modeling. BMC Bioinformatics, 2011, 12, 208.	1.2	4
51	Correlation of Influenza Virus Excess Mortality with Antigenic Variation: Application to Rapid Estimation of Influenza Mortality Burden. PLoS Computational Biology, 2010, 6, e1000882.	1.5	21
52	Length-dependent regulation of the Kv1.2 channel activation by its C-terminus. Molecular Membrane Biology, 2009, 26, 186-193.	2.0	6
53	Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution. Genome Research, 2008, 18, 178-187.	2.4	44