
## Dennis W Dees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3813104/publications.pdf Version: 2024-02-01



| #                                                                                                                                                                                                              | Article                                                                                                                                                                                                                   | IF  | CITATIONS |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|--|
| 1                                                                                                                                                                                                              | Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes. Journal of the Electrochemical Society, 2016, 163, A138-A149.                                                                | 2.9 | 472       |  |
| 2                                                                                                                                                                                                              | Examining Hysteresis in Composite<br><i>x</i> Li <sub>2</sub> MnO <sub>3</sub> ·(1– <i>x</i> )LiMO <sub>2</sub> Cathode Structures. Journal<br>of Physical Chemistry C, 2013, 117, 6525-6536.                             | 3.1 | 234       |  |
| 3                                                                                                                                                                                                              | Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode. Journal of Power Sources, 2009, 189, 263-268.                                                         | 7.8 | 232       |  |
| 4                                                                                                                                                                                                              | Modeling thermal management of lithium-ion PNGV batteries. Journal of Power Sources, 2002, 110, 349-356.                                                                                                                  | 7.8 | 182       |  |
| 5                                                                                                                                                                                                              | Application of a lithium–tin reference electrode to determine electrode contributions to impedance<br>rise in high-power lithium-ion cells. Electrochimica Acta, 2004, 49, 4763-4775.                                     | 5.2 | 158       |  |
| 6                                                                                                                                                                                                              | Morphological Transitions on Lithium Metal Anodes. Journal of the Electrochemical Society, 2009, 156, A726.                                                                                                               | 2.9 | 136       |  |
| 7                                                                                                                                                                                                              | Alternating Current Impedance Electrochemical Modeling of Lithium-Ion Positive Electrodes. Journal of the Electrochemical Society, 2005, 152, A1409.                                                                      | 2.9 | 129       |  |
| 8                                                                                                                                                                                                              | Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 2017, 342, 733-740.                                                                     | 7.8 | 129       |  |
| 9                                                                                                                                                                                                              | Electrochemical modeling of lithium polymer batteries. Journal of Power Sources, 2002, 110, 310-320.                                                                                                                      | 7.8 | 126       |  |
| 10                                                                                                                                                                                                             | Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes<br>in                                                                                                                   | 0.0 | 110       |  |
| <sup>10</sup> Li <sub>1.03</sub> (Ni <sub>0.5</sub> Co <sub>0.2</sub> Mn <sub>0.3</sub> ) <sub>0.97</sub> O <sub>2</sub> /Silicor<br>Full Cells. Journal of the Electrochemical Society, 2016, 163, A875-A887. |                                                                                                                                                                                                                           |     |           |  |
| 11                                                                                                                                                                                                             | Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode. Journal of Power<br>Sources, 2007, 174, 373-379.                                                                                      | 7.8 | 98        |  |
| 12                                                                                                                                                                                                             | Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power<br>Characterization Tests. Journal of the Electrochemical Society, 2008, 155, A603.                                                 | 2.9 | 98        |  |
| 13                                                                                                                                                                                                             | Enabling High-Energy, High-Voltage Lithium-Ion Cells: Standardization of Coin-Cell Assembly,<br>Electrochemical Testing, and Evaluation of Full Cells. Journal of the Electrochemical Society, 2016,<br>163, A2999-A3009. | 2.9 | 95        |  |
| 14                                                                                                                                                                                                             | A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes<br>Presented for Li <sub>x</sub> C <sub>6</sub> . Journal of the Electrochemical Society, 2012, 159,<br>A2029-A2037.    | 2.9 | 86        |  |
| 15                                                                                                                                                                                                             | Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing.<br>Journal of Power Sources, 2016, 322, 169-178.                                                                           | 7.8 | 84        |  |
| 16                                                                                                                                                                                                             | Fast Charging of Li-Ion Cells: Part I. Using Li/Cu Reference Electrodes to Probe Individual Electrode<br>Potentials. Journal of the Electrochemical Society, 2019, 166, A996-A1003.                                       | 2.9 | 79        |  |
| 17                                                                                                                                                                                                             | High-energy electrode investigation for plug-in hybrid electric vehicles. Journal of Power Sources, 2011, 196, 1537-1540.                                                                                                 | 7.8 | 71        |  |
| 18                                                                                                                                                                                                             | Theoretical examination of reference electrodes for lithium-ion cells. Journal of Power Sources, 2007, 174, 1001-1006.                                                                                                    | 7.8 | 65        |  |

DENNIS W DEES

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling and analysis of solvent removal during Li-ion battery electrode drying. Journal of Power<br>Sources, 2018, 378, 660-670.                                                                                             | 7.8 | 62        |
| 20 | Study of a dry room in a battery manufacturing plant using a process model. Journal of Power Sources, 2016, 326, 490-497.                                                                                                     | 7.8 | 57        |
| 21 | Simplified calculation of the area specific impedance for battery design. Journal of Power Sources, 2011, 196, 2289-2297.                                                                                                     | 7.8 | 53        |
| 22 | Effects of lithium difluoro(oxalate)borate on the performance of Li-rich composite cathode in Li-ion battery. Electrochemistry Communications, 2012, 24, 78-81.                                                               | 4.7 | 53        |
| 23 | Cost of automotive lithium-ion batteries operating at high upper cutoff voltages. Journal of Power<br>Sources, 2018, 403, 56-65.                                                                                              | 7.8 | 51        |
| 24 | Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications. Journal of Power Sources, 2017, 342, 279-291.                                   | 7.8 | 50        |
| 25 | Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta, 2013, 114, 1-6.                                                                                                                 | 5.2 | 49        |
| 26 | Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered<br>Transition-Metal Oxide Positive Electrode. Journal of the Electrochemical Society, 2015, 162, A559-A572.                                 | 2.9 | 44        |
| 27 | On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A508-A517.                                                                                     | 2.9 | 44        |
| 28 | Investigations of Si Thin Films as Anode of Lithium-Ion Batteries. ACS Applied Materials &<br>Interfaces, 2018, 10, 3487-3494.                                                                                                | 8.0 | 40        |
| 29 | A Raman-Based Investigation of the Fate of Li <sub>2</sub> MnO <sub>3</sub> in Lithium- and<br>Manganese-Rich Cathode Materials for Lithium Ion Batteries. Journal of the Electrochemical Society,<br>2015, 162, A1255-A1264. | 2.9 | 38        |
| 30 | Insights into the Role of Interphasial Morphology on the Electrochemical Performance of Lithium<br>Electrodes. Journal of the Electrochemical Society, 2012, 159, A873-A886.                                                  | 2.9 | 36        |
| 31 | Cost savings for manufacturing lithium batteries in a flexible plant. Journal of Power Sources, 2015, 283, 506-516.                                                                                                           | 7.8 | 34        |
| 32 | Apparent Increasing Lithium Diffusion Coefficient with Applied Current in Graphite. Journal of the Electrochemical Society, 2020, 167, 120528.                                                                                | 2.9 | 34        |
| 33 | Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides. Journal of the Electrochemical Society, 2015, 162, A897-A904.                                                                         | 2.9 | 27        |
| 34 | Electrochemical Modeling the Impedance of a Lithium-Ion Positive Electrode Single Particle. Journal of the Electrochemical Society, 2013, 160, A478-A486.                                                                     | 2.9 | 25        |
| 35 | <i>In situ</i> X-ray spatial profiling reveals uneven compression of electrode assemblies and steep<br>lateral gradients in lithium-ion coin cells. Physical Chemistry Chemical Physics, 2020, 22, 21977-21987.               | 2.8 | 25        |
| 36 | Fast Charging of Li-Ion Cells: Part II. Nonlinear Contributions to Cell and Electrode Polarization.<br>Journal of the Electrochemical Society, 2019, 166, A3305-A3313.                                                        | 2.9 | 24        |

DENNIS W DEES

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Insight into the Structural Evolution of a High-Voltage Spinel for Lithium-Ion Batteries. Chemistry of<br>Materials, 2014, 26, 4750-4756.                                                                             | 6.7  | 23        |
| 38 | Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich<br>Layered Transition-Metal Oxide Electrodes. Journal of the Electrochemical Society, 2015, 162,<br>A1374-A1381.       | 2.9  | 22        |
| 39 | Experimental Observations of Freeâ€Convection Mass Transfer to a Horizontal Surface with a Micromosaic Electrode. Journal of the Electrochemical Society, 1987, 134, 369-377.                                         | 2.9  | 18        |
| 40 | Graphite Lithiation under Fast Charging Conditions: Atomistic Modeling Insights. Journal of Physical<br>Chemistry C, 2020, 124, 8162-8169.                                                                            | 3.1  | 18        |
| 41 | Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.<br>Journal of Materials Research, 2010, 25, 1656-1660.                                                              | 2.6  | 16        |
| 42 | Pathways towards managing cost and degradation risk of fast charging cells with electrical and thermal controls. Energy and Environmental Science, 2021, 14, 6564-6573.                                               | 30.8 | 16        |
| 43 | Mass Transfer at Gas Evolving Surfaces: A Microscopic Study. Journal of the Electrochemical Society, 1987, 134, 1702-1713.                                                                                            | 2.9  | 13        |
| 44 | Toward standardizing the measurement of electrochemical properties of solid-state electrolytes in lithium batteries. Journal of Power Sources, 2000, 89, 249-255.                                                     | 7.8  | 12        |
| 45 | Estimating the Diffusion Coefficient of Lithium in Graphite: Extremely Fast Charging and a Comparison of Data Analysis Techniques. Journal of the Electrochemical Society, 2021, 168, 070506.                         | 2.9  | 12        |
| 46 | Electrochemical Characterization of Lithium and Manganese Rich Composite Material for Lithium Ion<br>Batteries. Journal of the Electrochemical Society, 2013, 160, A950-A954.                                         | 2.9  | 9         |
| 47 | Nonlinear Conductivities and Electrochemical Performances of<br>LiNi <sub>0.5</sub> Co <sub>0.2</sub> Mn <sub>0.3</sub> O <sub>2</sub> Electrodes. Journal of the<br>Electrochemical Society, 2016, 163, A2720-A2724. | 2.9  | 8         |
| 48 | Theoretical Analysis of a Blockingâ€Electrode Oxygen Sensor for Combustionâ€Gas Streams. Journal of the Electrochemical Society, 1993, 140, 2001-2010.                                                                | 2.9  | 5         |