Guoqing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dual-emissive-materials design concept enables tumour hypoxia imaging. Nature Materials, 2009, 8, 747-751.	27.5	941
2	Polymorphism and Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone. Journal of the American Chemical Society, 2010, 132, 2160-2162.	13.7	765
3	Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2007, 129, 8942-8943.	13.7	527
4	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie - International Edition, 2016, 55, 9872-9876.	13.8	343
5	Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Advanced Materials, 2017, 29, 1702428.	21.0	302
6	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	31.4	237
7	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
8	Aggregationâ€Induced Dualâ€Phosphorescence from Organic Molecules for Nondoped Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904273.	21.0	177
9	Alkyl chain length effects on solid-state difluoroboron β-diketonate mechanochromic luminescence. Journal of Materials Chemistry, 2011, 21, 8409.	6.7	161
10	Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale, 2016, 8, 17422-17426.	5.6	151
11	Protonâ€Activated "Off–On―Roomâ€Temperature Phosphorescence from Purely Organic Thioethers. Angewandte Chemie - International Edition, 2018, 57, 16046-16050.	13.8	130
12	An Organic Host–Guest System Producing Roomâ€Temperature Phosphorescence at the Partsâ€Perâ€Billion Level. Angewandte Chemie - International Edition, 2021, 60, 16970-16973.	13.8	122
13	Reversible solid-state mechanochromic fluorescence from a boron lipid dye. Journal of Materials Chemistry, 2011, 21, 8295.	6.7	121
14	General Design Strategy for Aromatic Ketone-Based Single-Component Dual-Emissive Materials. ACS Applied Materials & Interfaces, 2014, 6, 2279-2284.	8.0	114
15	Emission Color Tuning with Polymer Molecular Weight for Difluoroboron Dibenzoylmethaneâ€Polylactide. Advanced Materials, 2008, 20, 2099-2104.	21.0	111
16	Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS Nano, 2019, 13, 8890-8902.	14.6	111
17	Arene effects on difluoroboron \hat{l}^2 -diketonate mechanochromic luminescence. Journal of Materials Chemistry, 2011, 21, 8401.	6.7	110
18	A mechanistic investigation of mechanochromic luminescent organoboron materials. Journal of Materials Chemistry, 2012, 22, 17332.	6.7	103

GUOQING ZHANG

#	Article	IF	CITATIONS
19	Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling. Nature Communications, 2021, 12, 1364.	12.8	89
20	Mechanochromic Luminescence Quenching: Force-Enhanced Singlet-to-Triplet Intersystem Crossing for Iodide-Substituted Difluoroboronâ ´Dibenzoylmethaneâ ´Dodecane in the Solid State. Inorganic Chemistry, 2010, 49, 10747-10749.	4.0	85
21	Enantioselective Fluorescent Recognition in the Fluorous Phase: Enhanced Reactivity and Expanded Chiral Recognition. Journal of the American Chemical Society, 2015, 137, 3747-3750.	13.7	85
22	Hierarchical Multiplexing Nanodroplets for Imaging-Guided Cancer Radiotherapy via DNA Damage Enhancement and Concomitant DNA Repair Prevention. ACS Nano, 2018, 12, 5684-5698.	14.6	83
23	Role of Boron in the Polymer Chemistry and Photophysical Properties of Difluoroboronâ^'Dibenzoylmethane Polylactide. Macromolecules, 2009, 42, 8627-8633.	4.8	76
24	Polyion complex micellar nanoparticles for integrated fluorometric detection and bacteria inhibition in aqueous media. Biomaterials, 2014, 35, 1618-1626.	11.4	75
25	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie, 2016, 128, 10026-10030.	2.0	75
26	Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials. ACS Applied Materials & Interfaces, 2015, 7, 23633-23643.	8.0	72
27	Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO ₂ into Tunable Syngas. ACS Nano, 2020, 14, 6164-6172.	14.6	71
28	An Unexpected Chromophore–Solvent Reaction Leads to Bicomponent Aggregationâ€Induced Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 10023-10026.	13.8	67
29	Difluoroboron Dibenzoylmethane PCL-PLA Block Copolymers: Matrix Effects on Room Temperature Phosphorescence. Macromolecules, 2009, 42, 3162-3169.	4.8	66
30	Polymerization-Enhanced Intersystem Crossing: New Strategy to Achieve Long-Lived Excitons. Macromolecular Rapid Communications, 2015, 36, 298-303.	3.9	59
31	External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction. Journal of Physical Chemistry A, 2016, 120, 5791-5797.	2.5	58
32	Waterborne Polyurethanes with Tunable Fluorescence and Room-Temperature Phosphorescence. ACS Applied Materials & Interfaces, 2015, 7, 17209-17216.	8.0	57
33	Iron Tris(dibenzoylmethaneâ~'polylactide). Macromolecules, 2010, 43, 4909-4920.	4.8	51
34	Synthesis and Fluorescent Properties of Difluoroboron Dibenzoylmethane Polycaprolactone. Macromolecules, 2009, 42, 3092-3097.	4.8	48
35	Highly Selective and Efficient Synthesis of 7-Aminoquinolines and Their Applications as Golgi-Localized Probes. ACS Medicinal Chemistry Letters, 2019, 10, 954-959.	2.8	40
36	Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron βâ€Diketonate Materials. Chemistry - A European Journal, 2018, 24, 1859-1869.	3.3	37

GUOQING ZHANG

#	Article	IF	CITATIONS
37	Aggregationâ€Induced Emission with Longâ€Lived Roomâ€Temperature Phosphorescence from Methyleneâ€Linked Organic Donor–Acceptor Structures. Chemistry - an Asian Journal, 2019, 14, 751-754.	3.3	37
38	Protonâ€Activated "Off–On―Roomâ€Temperature Phosphorescence from Purely Organic Thioethers. Angewandte Chemie, 2018, 130, 16278-16282.	2.0	34
39	Protonation-Induced Room-Temperature Phosphorescence in Fluorescent Polyurethane. Journal of Physical Chemistry A, 2017, 121, 4225-4232.	2.5	31
40	Cancer Chemoradiotherapy Duo: Nano-Enabled Targeting of DNA Lesion Formation and DNA Damage Response. ACS Applied Materials & Interfaces, 2018, 10, 35734-35744.	8.0	30
41	Conjugated polymer-enhanced enantioselectivity in fluorescent sensing. Chemical Science, 2016, 7, 3614-3620.	7.4	29
42	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11, 5716-5734.	10.4	27
43	Boosting the triplet activity of heavy-atom-free difluoroboron dibenzoylmethane <i>via</i> sp ³ oxygen-bridged electron donors. Chemical Communications, 2019, 55, 67-70.	4.1	27
44	A combinatory approach towards the design of organic polymer luminescent materials. Journal of Materials Chemistry C, 2019, 7, 9917-9925.	5.5	24
45	Modulation of red organic room-temperature phosphorescence in heavy atom-free phosphors. Dyes and Pigments, 2021, 193, 109505.	3.7	24
46	An Organic Host–Guest System Producing Roomâ€Temperature Phosphorescence at the Partsâ€Perâ€Billion Level. Angewandte Chemie, 2021, 133, 17107-17110.	2.0	22
47	Kinetic and thermodynamic control of tetraphenylethene aggregationâ€induced emission behaviors. Aggregate, 2022, 3, .	9.9	22
48	Persistent Roomâ€Temperature Radicals from Anionic Naphthalimides: Spin Pairing and Supramolecular Chemistry. Chemistry - A European Journal, 2019, 25, 12497-12501.	3.3	21
49	An Unexpected Chromophore–Solvent Reaction Leads to Bicomponent Aggregationâ€Induced Phosphorescence. Angewandte Chemie, 2020, 132, 10109-10112.	2.0	21
50	Aggregation-Induced Emission from Fluorophore–Quencher Dyads with Long-Lived Luminescence. Journal of Physical Chemistry A, 2015, 119, 8854-8859.	2.5	20
51	Hydrochromic fluorescence of organo-boronium-avobenzone complexes. Analytical Methods, 2012, 4, 2641.	2.7	19
52	Highly Fluorescent Dyeâ€Aggregateâ€Enhanced Energyâ€Transfer Nanoparticles for Neuronal Cell Imaging. Advanced Optical Materials, 2013, 1, 549-553.	7.3	19
53	AIE-active Î ² -diketones containing pyridiniums: fluorogenic binding to cellulose and water-vapour-recoverable mechanochromic luminescence. Materials Chemistry Frontiers, 2017, 1, 693-696.	5.9	17
54	Aromatic Electrophilic Directing for Fluorescence and Room-Temperature Phosphorescence Modulation. Journal of Physical Chemistry Letters, 2021, 12, 3099-3105.	4.6	17

GUOQING ZHANG

#	Article	IF	CITATIONS
55	Luminescent Donor-Acceptor β-Diketones: Modulation of Emission by Solvent Polarity and Group II Metal Binding. Journal of Fluorescence, 2009, 19, 881-889.	2.5	16
56	Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst, The, 2016, 141, 1483-1487.	3.5	15
57	Waterborne polyacrylates with thermally activated delayed fluorescence and two-state phosphorescence. Materials Chemistry Frontiers, 2018, 2, 559-565.	5.9	15
58	Quantifiable Polymeric Fluorescent Ratiometric Î ³ -ray Chemosensor. ACS Applied Materials & Interfaces, 2020, 12, 42210-42216.	8.0	13
59	Modulation of OLED efficiency <i>via</i> a combination of aromatic electrophilic directing and intramolecular charge transfer. Journal of Materials Chemistry C, 2021, 9, 15698-15706.	5.5	13
60	Broadâ€Band Visibleâ€Light Excitable Roomâ€Temperature Phosphorescence Via Polymer Siteâ€Isolated Dye Aggregates. Advanced Optical Materials, 2022, 10, .	7.3	12
61	Homogeneous graft copolymerization of chitosan with methyl methacrylate byl̂³-irradiationvia a phthaloylchitosan intermediate. Polymer International, 2004, 53, 1491-1494.	3.1	10
62	Are pyridinium ylides radicals?. Chemical Communications, 2020, 56, 11287-11290.	4.1	8
63	Efficient and tunable fluorescence energy transfer via long-lived polymer excitons. Polymer Chemistry, 2015, 6, 1698-1702.	3.9	7
64	Macroscopic Wires from Fluorophore-Quencher Dyads with Long-Lived Blue Emission. Journal of Physical Chemistry A, 2017, 121, 7183-7190.	2.5	5
65	5-Hydroxypyran-4-one derivatives as potential therapeutic iron-chelating agents. ChemistrySelect, 2016, 1, 297-300.	1.5	4
66	Modulating Charge Separation and Intersystem Crossing in Donor–Switch–Acceptor Systems: A Computational Study. Journal of Physical Chemistry A, 2021, 125, 3088-3094.	2.5	4
67	UV gelation of single-component polyacrylates bearing dinitrobenzoate side groups. Chemical Communications, 2016, 52, 9383-9386.	4.1	3
68	How side-chain substituents and substrates influence mechanochromic luminescence: case study with pyrene. RSC Advances, 2017, 7, 46721-46725.	3.6	3
69	Fabrication and Degradation of Nanofibers Based on Luminescent Boron Dye-PLGA Blends. ACS Symposium Series, 2010, , 33-42.	0.5	2
70	Sensitization of europium(III) luminescence in water with β-diketone-poly(ethylene glycol) macroligand. Science China Chemistry, 2014, 57, 243-247.	8.2	2
71	Curved fractal structures of pyridine-substituted β-diketone crystals. CrystEngComm, 2017, 19, 2283-2287.	2.6	2
72	Persistent Radical Pairs between N‣ubstituted Naphthalimide and Carbanion Exhibit p <i>K</i> _a â€Dependent UV/Vis Absorption. Chemistry - A European Journal, 2020, 26, 12743-12746.	3.3	2

#	Article	IF	CITATIONS
73	Origin of Red‧hifted Phosphorescence from Triphenylamines: Triplet Excimer or Impurity?. Angewandte Chemie, 0, , .	2.0	2
74	Lipidâ€Headâ€Polymerâ€Tail Chimeric Vesicles. Macromolecular Rapid Communications, 2022, 43, .	3.9	2
75	Phosphorescence Enables Identification of Electronic State for Acridinium Salt in Solutions. Journal of Physical Chemistry Letters, 2021, 12, 12242-12248.	4.6	1