Lie-Ding Shiau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3812841/publications.pdf

Version: 2024-02-01

759233 839539 54 457 12 18 citations h-index g-index papers 54 54 54 270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison of the Nucleation Kinetics Obtained from the Cumulative Distributions of the Metastable Zone Width and Induction Time Data. Molecules, 2022, 27, 3007.	3.8	2
2	The Correlation for Effective Distribution Coefficient with Initial Impurity Concentration and Growth Rate for Acrylic Acid in Melt Crystallization. Crystals, 2022, 12, 709.	2.2	2
3	Chiral Purification of <i>S</i> -2-Phenylpropionic Acid from an Enantiomer Mixture by Stripping Crystallization. Industrial & Engineering Chemistry Research, 2022, 61, 10224-10232.	3.7	2
4	Purification of m-xylene from the mixed xylenes by stripping crystallization. Separation and Purification Technology, 2021, 255, 117688.	7.9	15
5	A Photomicroscopic Study on the Growth Rates of Calcium Oxalate Crystals in a New Synthetic Urine without Inhibitors and with Various Inhibitors. Crystals, 2021, 11, 223.	2.2	2
6	A linearized integral model for determining the nucleation parameters from metastable zone width data. Journal of Crystal Growth, 2021, 564, 126115.	1.5	5
7	Purification of durene from the mixture of durene and isodurene by stripping crystallization. Korean Journal of Chemical Engineering, 2021, 38, 2510-2518.	2.7	1
8	Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data. Crystals, 2021, 11, 1226.	2.2	3
9	Purification of Chlorophenol Isomers by Stripping Crystallization Combining Melt Crystallization and Vaporization. Molecules, 2021, 26, 6524.	3.8	O
10	Product Yield, Purity, and Effective Distribution Coefficient in Stripping Crystallization of $\langle i \rangle R \langle i \rangle -2$ -Amino-1-phenylethanol from the Enantiomer Mixture. Crystal Growth and Design, 2020, 20, 1328-1336.	3.0	8
11	Effect of L-valine impurity on the nucleation parameters of aqueous L-glutamic acid solutions from metastable zone width data. Journal of Crystal Growth, 2020, 546, 125790.	1.5	10
12	The Dependence of Effective Distribution Coefficient on Growth Rate and Mass Transfer Coefficient for P-Xylene in Solid-Layer Melt Crystallization. Processes, 2020, 8, 175.	2.8	6
13	A Linear Regression Model for Determining the Pre-Exponential Factor and Interfacial Energy Based on the Metastable Zone Width Data. Crystals, 2020, 10, 103.	2.2	1
14	Effects of Various Inhibitors on the Nucleation of Calcium Oxalate in Synthetic Urine. Crystals, 2020, 10, 333.	2.2	13
15	Investigations into the Influence of Solvents on the Nucleation Kinetics for Isonicotinamide, Lovastatin, and Phenacetin. ACS Omega, 2019, 4, 17352-17358.	3.5	5
16	Modelling of the Polymorph Nucleation based on Classical Nucleation Theory. Crystals, 2019, 9, 69.	2.2	10
17	Purification of Styrene from a Styrene/Ethylbenzene Mixture by Stripping Crystallization. Industrial & Styrene Chemistry Research, 2018, 57, 6759-6765.	3.7	1
18	Chiral Separation of the Phenylglycinol Enantiomers by Stripping Crystallization. Molecules, 2018, 23, 2901.	3.8	3

#	Article	IF	Citations
19	Determination of the Nucleation and Growth Kinetics for Aqueous L-glycine Solutions from the Turbidity Induction Time Data. Crystals, 2018, 8, 403.	2.2	16
20	The temperature dependence of the pre-exponential factor and interfacial energy for aqueous glycine solutions based on the metastable zone width data. Journal of Crystal Growth, 2018, 496-497, 18-23.	1.5	13
21	Chiral purification of S-ibuprofen from ibuprofen enantiomers by stripping crystallization. Chemical Engineering Research and Design, 2017, 117, 301-308.	5.6	21
22	Simultaneous determination of interfacial energy and growth activation energy from induction time measurements. Journal of Crystal Growth, 2016, 442, 47-51.	1.5	7
23	The influence of solvent on the pre-exponential factor and interfacial energy based on the metastable zone width data. CrystEngComm, 2016, 18, 6358-6364.	2.6	12
24	Comparison of the interfacial energy and pre-exponential factor calculated from the induction time and metastable zone width data based on classical nucleation theory. Journal of Crystal Growth, 2016, 450, 50-55.	1.5	21
25	A new model and a design procedure for an Oslo-Krystal cooling crystallizer. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 76-83.	5. 3	4
26	Comment on "Relation between metastable zone width and induction time of butyl paraben in ethanol― by H. Yang, CrystEngComm, 2015, 17 , 577. CrystEngComm, 2015, 17, 4402-4404.	2.6	2
27	A model for determination of the interfacial energy from the induction time or metastable zone width data based on turbidity measurements. CrystEngComm, 2014, 16, 9743-9752.	2.6	26
28	A model for determination of the interfacial energy from the measured metastable zone width by the polythermal method. Journal of Crystal Growth, 2014, 402, 267-272.	1.5	16
29	Purification of hydrobenzoin enantiomers by stripping crystallization. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 707-712.	5. 3	2
30	Investigations into the Effects of the Cooling Rate on Stripping Crystallization. Industrial & Engineering Chemistry Research, 2013, 52, 1716-1722.	3.7	11
31	Separation of the cresol isomers by stripping crystallization. Asia-Pacific Journal of Chemical Engineering, 2012, 7, S26.	1.5	12
32	Separation of the catechol/4-methoxyphenol mixture by stripping crystallization. Journal of Industrial and Engineering Chemistry, 2012, 18, 963-968.	5. 8	2
33	Purification of the 2,6-Xylenol/m-Cresol Mixture by a New Separation Technique Combining Distillation and Crystallization. Journal of Chemical Engineering of Japan, 2011, 44, 623-627.	0.6	3
34	Comments on "Heterogeneous Nucleation Rate of Calcium Carbonate Derived from Induction Period― Industrial & Camp; Engineering Chemistry Research, 2010, 49, 3496-3498.	3.7	1
35	Modeling solute clustering in the diffusion layer around a growing crystal. Journal of Chemical Physics, 2009, 130, 094105.	3.0	5
36	Separation of the benzene/cyclohexane mixture by stripping crystallization. Separation and Purification Technology, 2009, 66, 422-426.	7.9	19

#	Article	IF	CITATIONS
37	Separation of pâ€xylene from the multicomponent xylene system by stripping crystallization. AICHE Journal, 2008, 54, 337-342.	3.6	24
38	Separation of diethylbenzene isomers by distillative freezing. Journal of the Taiwan Institute of Chemical Engineers, 2008, 39, 59-65.	1.4	11
39	Modeling the nonideal mixing behavior in a continuous-stirred crystallizer. Computers and Chemical Engineering, 2006, 30, 970-977.	3.8	1
40	Application of distillative freezing in the separation ofo-xylene andp-xylene. AICHE Journal, 2006, 52, 1962-1967.	3.6	23
41	Separation and Purification ofp-Xylene from the Mixture ofm-Xylene andp-Xylene by Distillative Freezing. Industrial & Distillative Chemistry Research, 2005, 44, 2258-2265.	3.7	34
42	A Probability Model of Star-Branched Polymers Formed by Connecting Polydispersed Primary Chains Onto a Multifunctional Coupling Agent. Macromolecular Theory and Simulations, 2004, 13, 783-789.	1.4	1
43	The distribution of dislocation activities among crystals in sucrose crystallization. Chemical Engineering Science, 2003, 58, 5299-5304.	3.8	17
44	Molecular weight distribution of step-growth comb-branched polymers. Polymer, 2002, 43, 2835-2843.	3.8	3
45	Interactive Effects of Particle Mixing and Segregation on the Performance Characteristics of a Fluidized Bed Crystallizer. Industrial & Engineering Chemistry Research, 2001, 40, 707-713.	3.7	14
46	The Average Properties of Block Copolymers Formed via the One-Prepolymer Method and the Two-Prepolymer Method. Macromolecular Theory and Simulations, 2001, 10, 179-186.	1.4	4
47	CONSECUTIVE ESTERIFICATION OF 1,4-BUTANEDIOL WITH ACRYLIC ACID BY HOMOGENEOUS CATALYSIS. Chemical Engineering Communications, 2000, 179, 133-148.	2.6	6
48	Modelling of a fluidized-bed crystallizer operated in a batch mode. Chemical Engineering Science, 1999, 54, 865-871.	3.8	8
49	A comparative study on branched polymers formed by T-shaped junctions and by H-shaped junctions. Macromolecular Theory and Simulations, 1999, 8, 586-593.	1.4	4
50	A systematic analysis of average molecular weights and gelation conditions for branched immune complexes: The interaction between a multivalent antigen with distinct epitopes and many different types of bivalent antibodies., 1998, 39, 445-454.		2
51	Average properties of polymer blends formed between two polydisperse reactive polymers. Polymer, 1998, 39, 1317-1326.	3.8	1
52	A probability model on the average properties for the further stepwise polymerization of prepolymers. Macromolecular Theory and Simulations, 1996, 5, 1195-1205.	1.4	1
53	An Extended Study on the Average Molecular Weights of Nonlinear Polymers. Macromolecules, 1995, 28, 6273-6277.	4.8	10
54	Growth rate dispersion in batch crystallization. AICHE Journal, 1990, 36, 1669-1679.	3.6	11