Greg M Delgoffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia Reduction Sensitizes Refractory Cancers to Immunotherapy. Annual Review of Medicine, 2022, 73, 251-265.	5.0	30
2	COVIDâ€19 vaccination and treatment in vulnerable populations. Immunology, 2022, 165, 141-142.	2.0	0
3	Fighting in a wasteland: deleterious metabolites and antitumor immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	21
4	Editorial: Perspectives on the landscape of immunology from Nikhil Joshi. Immunology, 2022, 165, 369-370.	2.0	0
5	Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host and Microbe, 2022, 30, 530-544.e6.	5.1	21
6	Editorial: Diverse responses to <scp>SARS oV</scp> â€⊋ in the human population. Immunology, 2022, 166, 1-1.	2.0	1
7	Niche topics and location, location, location, with Amanda Lund. Immunology, 2022, 166, 153-154.	2.0	0
8	Editorial: Streamlining the process of submissions to <i>Immunology</i> . Immunology, 2022, 166, 267-267.	2.0	0
9	Analyzing Melanoma Cell Oxygen Consumption and Extracellular Acidification Rates Using Seahorse Technology. Methods in Molecular Biology, 2021, 2265, 81-89.	0.4	0
10	Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nature Immunology, 2021, 22, 205-215.	7.0	358
11	CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021, 591, 652-658.	13.7	187
12	Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature, 2021, 591, 645-651.	13.7	492
13	Metabolic barriers to cancer immunotherapy. Nature Reviews Immunology, 2021, 21, 785-797.	10.6	245
14	Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. , 2021, 9, e002088.		59
15	The role of exhaustion in CAR T cell therapy. Cancer Cell, 2021, 39, 885-888.	7.7	35
16	Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Seminars in Immunology, 2021, 52, 101485.	2.7	24
17	Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Reports, 2021, 36, 109699.	2.9	37
18	Characteristics of the Tumor Microenvironment That Influence Immune Cell Functions: Hypoxia, Oxidative Stress, Metabolic Alterations. Cancers, 2020, 12, 3802.	1.7	65

GREG M DELGOFFE

#	Article	IF	CITATIONS
19	Restoring glucose uptake rescues neutrophil dysfunction and protects against systemic fungal infection in mouse models of kidney disease. Science Translational Medicine, 2020, 12, .	5.8	22
20	Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nature Immunology, 2020, 21, 331-342.	7.0	172
21	Checkpoint molecules coordinately restrain hyperactivated effector T cells in the tumor microenvironment. Oncolmmunology, 2020, 9, 1708064.	2.1	33
22	NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight, 2020, 5, .	2.3	43
23	Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8+ T Cell-Derived Interferon-Î ³ . Immunity, 2019, 51, 381-397.e6.	6.6	186
24	mTORC2 Deficiency Alters the Metabolic Profile of Conventional Dendritic Cells. Frontiers in Immunology, 2019, 10, 1451.	2.2	13
25	Oncolytic Viruses Engineered to Enforce Leptin Expression Reprogram Tumor-Infiltrating T Cell Metabolism and Promote Tumor Clearance. Immunity, 2019, 51, 548-560.e4.	6.6	88
26	The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8+ Memory T Cell Maintenance and Secondary Response to Infection. Journal of Immunology, 2019, 203, 117-126.	0.4	22
27	IRF1 Inhibits Antitumor Immunity through the Upregulation of PD-L1 in the Tumor Cell. Cancer Immunology Research, 2019, 7, 1258-1266.	1.6	56
28	Tumor-Derived α-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells. Cancer Immunology Research, 2019, 7, 1001-1012.	1.6	31
29	IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nature Immunology, 2019, 20, 534-545.	7.0	63
30	Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells. Cell Reports, 2019, 27, 129-141.e4.	2.9	55
31	Metabolic Consequences of T-cell Costimulation in Anticancer Immunity. Cancer Immunology Research, 2019, 7, 1564-1569.	1.6	48
32	Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight, 2019, 4, .	2.3	148
33	IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Reports, 2018, 22, 2642-2653.	2.9	157
34	Early TCR Signaling Induces Rapid Aerobic Glycolysis Enabling Distinct Acute T Cell Effector Functions. Cell Reports, 2018, 22, 1509-1521.	2.9	322
35	Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clinical Cancer Research, 2018, 24, 2473-2481.	3.2	49
36	4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. Journal of Experimental Medicine, 2018, 215, 1091-1100.	4.2	197

GREG M DELGOFFE

#	Article	IF	CITATIONS
37	ATR kinase inhibitor AZD6738 potentiates CD8+ T cell–dependent antitumor activity following radiation. Journal of Clinical Investigation, 2018, 128, 3926-3940.	3.9	136
38	Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. Journal of Clinical Investigation, 2018, 128, 4884-4897.	3.9	95
39	Interferon-Î ³ Drives Treg Fragility to Promote Anti-tumor Immunity. Cell, 2017, 169, 1130-1141.e11.	13.5	431
40	Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nature Communications, 2017, 8, 14649.	5.8	128
41	Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunology Research, 2017, 5, 9-16.	1.6	381
42	Cutting Edge: Murine Mast Cells Rapidly Modulate Metabolic Pathways Essential for Distinct Effector Functions. Journal of Immunology, 2017, 198, 640-644.	0.4	34
43	Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity. Vaccines, 2016, 4, 46.	2.1	87
44	Reversing T Cell Dysfunction for Tumor Immunotherapy. , 2016, , 109-128.		0
45	Filling the Tank: Keeping Antitumor T Cells Metabolically Fit for the Long Haul. Cancer Immunology Research, 2016, 4, 1001-1006.	1.6	22
46	PP2A's restraint of mTOR is critical for Treg cell activity. Nature Immunology, 2016, 17, 478-479.	7.0	6
47	Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nature Immunology, 2016, 17, 704-711.	7.0	199
48	Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8 + T Cell Exhaustion. Immunity, 2016, 45, 358-373.	6.6	560
49	The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity, 2016, 45, 374-388.	6.6	504
50	VHL Brings Warburg into the Memory Spotlight. Immunity, 2016, 45, 953-955.	6.6	3
51	Interleukin-35 Limits Anti-Tumor Immunity. Immunity, 2016, 44, 316-329.	6.6	230
52	Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Molecular Immunology, 2015, 68, 492-496.	1.0	65
53	Sugar, fat, and protein: new insights into what T cells crave. Current Opinion in Immunology, 2015, 33, 49-54.	2.4	19
54	mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. Journal of Clinical Investigation, 2015, 125, 2090-2108.	3.9	329

GREG M DELGOFFE

#	Article	IF	CITATIONS
55	A Fox of a different color: FoxA1 programs a new regulatory T cell subset. Nature Medicine, 2014, 20, 236-237.	15.2	4
56	Interleukin-35: A Novel Mediator of Peripheral Tolerance. , 2014, , 377-387.		0
57	Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature, 2013, 501, 252-256.	13.7	489
58	STAT heterodimers in immunity. Jak-stat, 2013, 2, e23060.	2.2	78
59	Response to Comment on "Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathways― Journal of Immunology, 2012, 188, 5204-5205.	0.4	0
60	Identity Crisis: It's Not Just Foxp3 Anymore. Immunity, 2012, 37, 759-761.	6.6	7
61	The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology, 2012, 13, 290-299.	7.0	371
62	Exploring Functional In Vivo Consequences of the Selective Genetic Ablation of mTOR Signaling in T Helper Lymphocytes. Methods in Molecular Biology, 2012, 821, 317-327.	0.4	7
63	Interpreting mixed signals: the cell's cytokine conundrum. Current Opinion in Immunology, 2011, 23, 632-638.	2.4	51
64	The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology, 2011, 12, 295-303.	7.0	970
65	Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathways. Journal of Immunology, 2011, 187, 4416-4420.	0.4	23
66	The Receptor SIGIRR Suppresses Th17 Cell Proliferation via Inhibition of the Interleukin-1 Receptor Pathway and mTOR Kinase Activation. Immunity, 2010, 32, 54-66.	6.6	171
67	The Mammalian Target of Rapamycin: Linking T Cell Differentiation, Function, and Metabolism. Immunity, 2010, 33, 301-311.	6.6	429
68	Anergic T Cells Are Metabolically Anergic. Journal of Immunology, 2009, 183, 6095-6101.	0.4	243
69	The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment. Immunity, 2009, 30, 832-844.	6.6	1,079
70	mTOR: taking cues from the immune microenvironment. Immunology, 2009, 127, 459-465.	2.0	100
71	Enhanced interaction between Hsp90 and raptor regulates mTOR signaling upon T cell activation. Molecular Immunology, 2009, 46, 2694-2698.	1.0	30
72	Metabolic â€~De-Programming' of Neutrophils Protects Against Fatal Bloodstream Fungal Infections in Kidney Disease. SSRN Electronic Journal, 0, , .	0.4	0