Rebeca Bouza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381179/publications.pdf

Version: 2024-02-01

289141 304602 1,733 57 22 40 citations h-index g-index papers 57 57 57 2151 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isosorbide plasticized corn starch filled with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles: Properties and behavior under environmental factors. International Journal of Biological Macromolecules, 2022, 202, 345-353.	3.6	6
2	Donut-Shaped Microparticles Prepared from Different C-Type Starch Sources: Characterization and Encapsulation of Gallic Acid. ACS Food Science & Technology, 2022, 2, 862-871.	1.3	1
3	Influence of the hydrophilicity of montmorillonite on structure and properties of thermoplastic wheat starch/montmorillonite bionanocomposites. Polymers for Advanced Technologies, 2021, 32, 4479-4489.	1.6	20
4	TERMINOLOGY AND CONCEPTS OF THE NEW INDUSTRY FOR ENGINEERING STUDENTS. EDULEARN Proceedings, 2021, , .	0.0	0
5	Preparation and characterization of bionanocomposite films based on wheat starch and reinforced with cellulose nanocrystals. Cellulose, 2021, 28, 7781-7793.	2.4	14
6	Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. International Journal of Biological Macromolecules, 2020, 146, 110-118.	3.6	55
7	Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. International Journal of Pharmaceutics, 2020, 589, 119828.	2.6	69
8	Overexpression of ZePrx in Nicotiana tabacum Affects Lignin Biosynthesis Without Altering Redox Homeostasis. Frontiers in Plant Science, 2020, 11, 900.	1.7	6
9	Improvement of endothelial function by Gunnera tinctoria extract with antioxidant properties. Biological Research, 2020, 53, 55.	1.5	8
10	Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. International Journal of Biological Macromolecules, 2020, 164, 2028-2037.	3.6	20
11	A Novel Hydrocolloid Film Based on Pectin, Starch and Gunnera tinctoria and Ugni molinae Plant Extracts for Wound Dressing Applications. Current Topics in Medicinal Chemistry, 2020, 20, 280-292.	1.0	19
12	Novel Selfâ€Reinforced Films Based on Poly (3â€Hydroxybutyrateâ€Coâ€3â€Hydroxyvalerate) (PHBV) and PHBV Microparticles. Polymer Engineering and Science, 2019, 59, E120.	1.5	3
13	Hydrocortisone loaded poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for topical ophthalmic administration: Preparation, characterization and evaluation of ophthalmic toxicity. International Journal of Pharmaceutics, 2019, 568, 118519.	2.6	23
14	Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydrate Polymers, 2019, 206, 726-733.	5.1	40
15	Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanocrystal films: artificial weathering, humidity absorption, water vapor transmission rate, antimicrobial activity and biocompatibility. Cellulose, 2019, 26, 2333-2348.	2.4	13
16	Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: Effect on swelling and mechanical properties. Materials Science and Engineering C, 2019, 96, 583-590.	3.8	50
17	PHBV/CNC bionanocomposites processed by extrusion: Structural characterization and properties. Polymer Composites, 2019, 40, E275.	2.3	16
18	Effects of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles on morphological, mechanical, thermal, and barrier properties in thermoplastic potato starch films. Carbohydrate Polymers, 2018, 194, 357-364.	5.1	35

#	Article	IF	CITATIONS
19	Preparation and characterization of nano and micro particles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via emulsification/solvent evaporation and nanoprecipitation techniques. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
20	Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules, 2018, 114, 426-433.	3.6	100
21	Effect of environmental factors on Poly(3â€hydroxybutyrateâ€ <i>co</i> â^'3â€hydroxyvalerate)/Poly(butylene) Tj E Composites, 2018, 39, 915-923.		.784314 rgE 9
22	Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment. Food Chemistry, 2018, 246, 1-5.	4.2	14
23	Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 2018, 25, 1.	1.2	182
24	Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics. International Journal of Biological Macromolecules, 2018, 118, 2201-2207.	3.6	35
25	Starch edible films loaded with donut-shaped starch microparticles. LWT - Food Science and Technology, 2018, 98, 62-68.	2.5	36
26	Morphological and structural changes of starch during processing by melt blending. Starch/Staerke, 2017, 69, 1600247.	1.1	14
27	Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 2017, 157, 1094-1104.	5.1	137
28	Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing, 2017, 93, 41-48.	3.8	81
29	Chemical composition and thermal properties of Chilean <i>Araucaria araucana </i> starch. Starch/Staerke, 2016, 68, 100-105.	1.1	4
30	Polylactic acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano and microparticles for packaging bioplastic composites. Polymer Bulletin, 2016, 73, 3485-3502.	1.7	13
31	Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 2016, 149, 83-93.	5.1	88
32	Synthesis and characterization of polyhydroxybutyrate- <i>co</i> -hydroxyvalerate nanoparticles for encapsulation of quercetin. Journal of Bioactive and Compatible Polymers, 2016, 31, 439-452.	0.8	19
33	EDUCATIONAL RESEARCH EXPERIENCES ON POLYMER PHYSICS. , 2016, , .		O
34	Morphology and thermal behavior of poly (3-hydroxybutyrate- <i>co</i>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Composites, 2015, 36, 2051-2058.		droxyvalerat 21
35	Influence of the molecular weight of a modifier on the phase separation in an epoxy thermoset modified with a thermoplastic. European Polymer Journal, 2014, 58, 125-134.	2.6	16
36	Horse chestnut (Aesculus hippocastanum L.) starch: Basic physico-chemical characteristics and use as thermoplastic material. Carbohydrate Polymers, 2014, 112, 677-685.	5.1	36

#	Article	IF	CITATIONS
37	Study of thermal and morphological properties of a hybrid system, iPP/POSS. Effect of flame retardance. Composites Part B: Engineering, 2014, 58, 566-572.	5.9	32
38	Flame retardancy and thermal stability of organic–inorganic hybrid resins based on polyhedral oligomeric silsesquioxanes and montmorillonite clay. Composites Part B: Engineering, 2014, 63, 67-76.	5.9	29
39	Poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polymer Composites, 2013, 34, 1033-1040.	2.3	33
40	Nanoclayâ€reinforced poly(butylene adipateâ€ <i>co</i> â€terephthalate) biocomposites for packaging applications. Polymer Composites, 2012, 33, 2022-2028.	2.3	20
41	Physical, chemical and mechanical properties of pehuen cellulosic husk and its pehuen-starch based composites. Carbohydrate Polymers, 2012, 90, 1550-1556.	5.1	40
42	Processing and characterization of starch-based materials from pehuen seeds (Araucaria araucana) Tj ETQq0 0 C	rgBT/Ov	erlock 10 Tf 50
43	Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 935-949.	3.8	20
44	Thermodynamic analysis of polymerization-induced phase separation of a polystyrene in epoxy/monoamine–diamine systems. Effect of monoamine–diamine proportion on the phase diagram. European Polymer Journal, 2011, 47, 1676-1685.	2.6	12
45	Thermal behavior of blends based on a thermoplastic-modified epoxy resin with a crosslinking density variation. Journal of Thermal Analysis and Calorimetry, 2011, 105, 599-606.	2.0	11
46	Microstructure, morphology, and mechanical properties of styreneâ€butadiene rubber/organoclay nanocomposites. Polymer Engineering and Science, 2011, 51, 1720-1729.	1.5	13
47	Efficacy of hindered amines in woodflourâ€polypropylene composites compatibilized with vinyltrimethoxysilane after accelerated weathering and moisture absorption. Journal of Applied Polymer Science, 2011, 120, 2017-2026.	1.3	8
48	Rheological, Mechanical and Thermal Behaviour of Wood Polymer Composites Based on Recycled Polypropylene. Journal of Polymers and the Environment, 2010, 18, 318-325.	2.4	66
49	Development of polypropyleneâ°•wood flour ecocomposites. Evaluation of silane as coupling agent. , 2010, , .		O
50	Design of new polypropylene–woodflour composites: Processing and physical characterization. Polymer Composites, 2009, 30, 880-886.	2.3	16
51	Effects of vinyltrimethoxy silane on mechanical properties and morphology of polypropyleneâ€woodflour composites. Polymer Engineering and Science, 2009, 49, 324-332.	1.5	13
52	Application of FTIR spectroscopy to determine transport properties and water–polymer interactions in polypropylene (PP)/poly(ethylene-co-vinyl alcohol) (EVOH) blend films: Effect of poly(ethylene-co-vinyl alcohol) content and water activity. Polymer, 2009, 50, 2981-2989.	1.8	32
53	Analysis of the isothermal crystallization of polypropylene/wood flour composites. Journal of Thermal Analysis and Calorimetry, 2008, 94, 119-127.	2.0	21
54	Effects of vinyltrimethoxy silane on thermal properties and dynamic mechanical properties of polypropylene–wood flour composites. Journal of Applied Polymer Science, 2008, 109, 1197-1204.	1.3	32

#	Article	IF	CITATIONS
55	Dynamic crystallization of polypropylene and wood-based composites. Journal of Applied Polymer Science, 2006, 102, 6028-6036.	1.3	20
56	Selection of a precursor of a monofunctional polyhedral oligomeric silsesquioxane reacted with aromatic diamines. Journal of Applied Polymer Science, 2004, 92, 1576-1583.	1.3	9
57	Extraction and quantification of antioxidants from low-density polyethylene by microwave energy and liquid chromatography. Analytica Chimica Acta, 2004, 521, 179-188.	2.6	40