Clifford Tabin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In ovo</i> electroporation of chicken limb bud ectoderm. Developmental Dynamics, 2022, 251, 1628-1638.	0.8	5
2	Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117938119.	3.3	46
3	Limb positioning and initiation: An evolutionary context of pattern and formation. Developmental Dynamics, 2021, 250, 1264-1279.	0.8	16
4	A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nature Communications, 2021, 12, 1447.	5.8	60
5	Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation. Bmc Ecology and Evolution, 2021, 21, 94.	0.7	7
6	The mevalonate pathway is a critical regulator of tendon cell specification. Development (Cambridge), 2020, 147, .	1.2	8
7	Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, <i>Astyanax mexicanus</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 405-422.	0.6	9
8	Little Fish, Big Questions: A Collection of Modern Techniques for Mexican Tetra Research. Journal of Visualized Experiments, 2020, , .	0.2	1
9	L-type voltage-gated Ca ²⁺ channel Ca _V 1.2 regulates chondrogenesis during limb development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21592-21601.	3.3	41
10	Attenuated Fgf Signaling Underlies the Forelimb Heterochrony in the Emu Dromaius novaehollandiae. Current Biology, 2019, 29, 3681-3691.e5.	1.8	24
11	Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell, 2019, 179, 90-105.e21.	13.5	95
12	Developmental Biology: Hox Timing Determines Limb Placement. Current Biology, 2019, 29, R52-R54.	1.8	6
13	Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature, 2019, 565, 480-484.	13.7	39
14	Blueprint for an intestinal villus: Speciesâ€specific assembly required. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e317.	5.9	39
15	Temperature preference of cave and surface populations of Astyanax mexicanus. Developmental Biology, 2018, 441, 338-344.	0.9	25
16	Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature, 2018, 555, 647-651.	13.7	196
17	Unique pelvic fin in a tetrapod-like fossil fish, and the evolution of limb patterning. Proceedings of the United States of America, 2018, 115, 12005-12010.	3.3	7
18	Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. Journal of Visualized Experiments, 2018, , .	0.2	7

CLIFFORD TABIN

#	Article	IF	CITATIONS
19	Comparative evidence for the independent evolution of hair and sweat gland traits in primates. Journal of Human Evolution, 2018, 125, 99-105.	1.3	36
20	Identity and novelty in the avian syrinx. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10209-10217.	3.3	38
21	Chick midgut morphogenesis. International Journal of Developmental Biology, 2018, 62, 109-119.	0.3	22
22	Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract. Developmental Biology, 2018, 441, 285-296.	0.9	22
23	A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Reports, 2017, 18, 762-776.	2.9	752
24	Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science, 2017, 355, 1081-1084.	6.0	133
25	Integration of Shh and Fgf signaling in controlling <i>Hox</i> gene expression in cultured limb cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3139-3144.	3.3	21
26	BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2277-2282.	3.3	74
27	miRâ€128â€1 is not required for hair pigmentation in mice. Experimental Dermatology, 2017, 26, 940-942.	1.4	2
28	Deep homology in the age of next-generation sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150475.	1.8	36
29	Saunders's framework for understanding limb development as a platform for investigating limb evolution. Developmental Biology, 2017, 429, 401-408.	0.9	11
30	On the Formation of Digits and Joints during Limb Development. Developmental Cell, 2017, 41, 459-465.	3.1	32
31	Scaling Pattern to Variations in Size during Development of the Vertebrate Neural Tube. Developmental Cell, 2016, 37, 127-135.	3.1	41
32	A genetic basis of variation in eccrine sweat gland and hair follicle density. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9932-9937.	3.3	57
33	Bending Gradients: How the Intestinal Stem Cell Gets Its Home. Cell, 2015, 161, 569-580.	13.5	234
34	Lgr6 marks nail stem cells and is required for digit tip regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13249-13254.	3.3	104
35	Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9668-9673.	3.3	199
36	Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas. Current Biology, 2015, 25, 2785-2794.	1.8	38

CLIFFORD TABIN

#	Article	IF	CITATIONS
37	Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4884-93.	3.3	60
38	Vertebrate Limb Bud Formation Is Initiated by Localized Epithelial-to-Mesenchymal Transition. Science, 2014, 343, 1253-1256.	6.0	141
39	A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature, 2014, 516, 391-394.	13.7	70
40	Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature, 2014, 511, 41-45.	13.7	127
41	Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish. Science, 2013, 342, 1372-1375.	6.0	319
42	Evolution of Vertebrate Limb Morphology. FASEB Journal, 2013, 27, 74.3.	0.2	0
43	Essential Genes in the Development and Maintenance of the Temporomandibular Joint. FASEB Journal, 2013, 27, 319.5.	0.2	0
44	Cell Velocity Gradients Underlie Early Morphogenesis of the Avian Gut Tube. , 2012, , .		0
45	Initiation of Proximal-Distal Patterning in the Vertebrate Limb by Signals and Growth. Science, 2011, 332, 1083-1086.	6.0	140
46	Molecular anatomy of the developing limb in the coquÃ-frog, <i><scp>E</scp>leutherodactylus coqui</i> . Evolution & Development, 2011, 13, 415-426.	1.1	16
47	Dynamic expression of two thrombospondins during axolotl limb regeneration. Developmental Dynamics, 2011, 240, 1249-1258.	0.8	26
48	A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus. PLoS Genetics, 2009, 5, e1000326.	1.5	272
49	Cell Movements at Hensen's Node Establish Left/Right Asymmetric Gene Expression in the Chick. Science, 2009, 324, 941-944.	6.0	157
50	Achieving bilateral symmetry during vertebrate limb development. Seminars in Cell and Developmental Biology, 2009, 20, 479-484.	2.3	25
51	Grasping Limb Patterning. Science, 2008, 321, 350-352.	6.0	25
52	Novel molecular mechanisms regulating Shh expression and limb patterning. FASEB Journal, 2007, 21, A199.	0.2	0
53	The Key to Left-Right Asymmetry. Cell, 2006, 127, 27-32.	13.5	88
54	Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Developmental Biology, 2006, 295, 580-588.	0.9	144

CLIFFORD TABIN

#	Article	IF	CITATIONS
55	Genetic Analysis of the Roles of BMP2, BMP4, and BMP7 in Limb Patterning and Skeletogenesis. PLoS Genetics, 2006, 2, e216.	1.5	532
56	Tbx5 is required for forelimb bud formation and continued outgrowth. Development (Cambridge), 2003, 130, 2741-2751.	1.2	204
57	A two-cilia model for vertebrate left-right axis specification. Genes and Development, 2003, 17, 1-6.	2.7	226
58	Clocks and Hox. Nature, 2001, 412, 780-781.	13.7	13
59	Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development (Cambridge), 2001, 128, 3855-3866.	1.2	749
60	Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evolution & Development, 2000, 2, 348-359.	1.1	75
61	Developmental model for thalidomide action. Nature, 1999, 400, 420-420.	13.7	0
62	The dynamic organizer. Nature Cell Biology, 1999, 1, E179-E181.	4.6	1
63	A new spin on handed asymmetry. Nature, 1999, 397, 295-298.	13.7	42
64	BMP signalling specifies the pyloric sphincter. Nature, 1999, 402, 748-749.	13.7	44
65	Role of Pitx1 Upstream of Tbx4 in Specification of Hindlimb Identity. Science, 1999, 283, 1736-1739.	6.0	280
66	A developmental model for thalidomide defects. Nature, 1998, 396, 322-323.	13.7	55
67	The molecular ZPA. The Journal of Experimental Zoology, 1998, 282, 677-690.	1.4	63
68	Distinct WNT Pathways Regulating AER Formation and Dorsoventral Polarity in the Chick Limb Bud. Science, 1998, 280, 1274-1277.	6.0	397
69	Hox mutations au naturel. Nature Genetics, 1996, 13, 256-258.	9.4	9
70	Biochemical evidence that Patched is the Hedgehog receptor. Nature, 1996, 384, 176-179.	13.7	781
71	Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature, 1992, 358, 236-239.	13.7	309