Marie-Caroline Michalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps ,. American Journal of Clinical Nutrition, 2017, 105, 1033-1045.	2.2	267
2	Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. Journal of Nutritional Biochemistry, 2011, 22, 53-59.	1.9	235
3	Does homogenization affect the human health properties of cow's milk?. Trends in Food Science and Technology, 2006, 17, 423-437.	7.8	167
4	Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. Journal of Lipid Research, 2012, 53, 2069-2080.	2.0	165
5	Optical parameters of milk fat globules for laser light scattering measurements. Dairy Science and Technology, 2001, 81, 787-796.	0.9	158
6	Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids and Surfaces B: Biointerfaces, 2002, 23, 23-30.	2.5	148
7	Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E374-E386.	1.8	133
8	WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach?. BMJ: British Medical Journal, 2019, 366, l4137.	2.4	127
9	Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 2011, 93, 39-45.	1.3	126
10	Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. Journal of Pathology, 2018, 246, 217-230.	2.1	125
11	Structure–function relationship of the milk fat globule. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 118-127.	1.3	117
12	The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Dairy Science and Technology, 2003, 83, 131-143.	0.9	116
13	Postprandial Endotoxemia Linked With Chylomicrons and Lipopolysaccharides Handling in Obese Versus Lean Men: A Lipid Dose-Effect Trial. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3427-3435.	1.8	112
14	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	2.9	109
15	Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. European Journal of Lipid Science and Technology, 2009, 111, 413-431.	1.0	101
16	Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. American Journal of Clinical Nutrition, 2013, 97, 23-36.	2.2	99
17	Overfeeding increases postprandial endotoxemia in men: Inflammatory outcome may depend on LPS transporters LBP and sCD14. Molecular Nutrition and Food Research, 2014, 58, 1513-1518.	1.5	95
18	Insulin Resistance is Associated with MCP1-Mediated Macrophage Accumulation in Skeletal Muscle in Mice and Humans, PLoS ONE, 2014, 9, e110653.	1.1	91

#	Article	IF	CITATIONS
19	The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Dairy Science and Technology, 2004, 84, 343-358.	0.9	84
20	Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chemistry and Physics of Lipids, 2004, 132, 247-261.	1.5	79
21	The fatty acid composition of small and large naturally occurring milk fat globules. European Journal of Lipid Science and Technology, 2003, 105, 677-682.	1.0	76
22	Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in highâ€fat fed mice. Molecular Nutrition and Food Research, 2016, 60, 609-620.	1.5	76
23	n-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice. Nutrition and Metabolism, 2013, 10, 23.	1.3	73
24	Differently sized native milk fat globules separated by microfiltration: fatty acid composition of the milk fat globule membrane and triglyceride core. European Journal of Lipid Science and Technology, 2005, 107, 80-86.	1.0	71
25	Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. Journal of Nutritional Biochemistry, 2019, 73, 108224.	1.9	69
26	Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk – A preliminary study. Molecular Nutrition and Food Research, 2008, 52, 1478-1485.	1.5	68
27	Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut, 2020, 69, 487-501.	6.1	68
28	Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chemistry, 2018, 240, 67-74.	4.2	66
29	The dispersion state of milk fat influences triglyceride metabolism in the rat. European Journal of Nutrition, 2005, 44, 436-444.	1.8	65
30	Appearance of submicronic particles in the milk fat globule size distribution upon mechanical treatments. Dairy Science and Technology, 2002, 82, 193-208.	0.9	65
31	Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food and Function, 2012, 3, 537.	2.1	64
32	Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice. Journal of Nutrition, 2015, 145, 1770-1777.	1.3	63
33	The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition, 2006, 45, 215-224.	1.8	62
34	Phospholipid species and minor sterols in French human milks. Food Chemistry, 2010, 120, 684-691.	4.2	57
35	Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie, 2020, 169, 121-132.	1.3	56
36	Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E107-E120.	1.8	49

#	Article	IF	CITATIONS
37	Membrane phospholipids and sterols in microfiltered milk fat globules. European Journal of Lipid Science and Technology, 2007, 109, 1167-1173.	1.0	48
38	¹³ C tracer recovery in human stools after digestion of a fatâ€rich meal labelled with [1,1,1â€ ¹³ C3]tripalmitin and [1,1,1â€ ¹³ C3]triolein. Rapid Communications in Mass Spectrometry, 2011, 25, 2697-2703.	0.7	46
39	On the supposed influence of milk homogenization on the risk of CVD, diabetes and allergy. British Journal of Nutrition, 2007, 97, 598-610.	1.2	45
40	High-fat diet action on adiposity, inflammation, and insulin sensitivity depends on the control low-fat diet. Nutrition Research, 2013, 33, 952-960.	1.3	40
41	Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Research International, 2007, 40, 191-202.	2.9	37
42	Milk Polar Lipids in a Highâ€Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition and Food Research, 2019, 63, e1801078.	1.5	35
43	CLA profile in native fat globules of different sizes selected from raw milk. International Dairy Journal, 2005, 15, 1089-1094.	1.5	32
44	Pasture <i>v.</i> standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. British Journal of Nutrition, 2014, 112, 520-535.	1.2	24
45	Production, partial purification and characterisation of lipases from Pseudomonas fragi CRDA 037. Process Biochemistry, 1997, 32, 225-232.	1.8	23
46	Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion?. Journal of Nutritional Biochemistry, 2019, 65, 128-138.	1.9	23
47	Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie, 2020, 169, 133-143.	1.3	18
48	Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight, 2021, 6, .	2.3	17
49	Emulsifying dietary fat modulates postprandial endotoxemia associated with chylomicronemia in obsee men: a pilot randomized crossover study. Lipids in Health and Disease, 2017, 16, 97.	1.2	15
50	Omegaâ€3 Polyunsaturated Fatty Acids Inhibit ILâ€17A Secretion through Decreased ICAMâ€1 Expression in TÂCells Coâ€Cultured with Adiposeâ€Derived Stem Cells Harvested from Adipose Tissues of Obese Subjects. Molecular Nutrition and Food Research, 2019, 63, e1801148.	1.5	15
51	Impact of Rapeseed and Soy Lecithin on Postprandial Lipid Metabolism, Bile Acid Profile, and Gut Bacteria in Mice. Molecular Nutrition and Food Research, 2021, 65, e2001068.	1.5	15
52	Organisation structurale et moléculaire des lipides dans les aliments : impacts possibles sur leur digestion et leur assimilation par l'Homme. Oleagineux Corps Gras Lipides, 2011, 18, 324-351.	0.2	14
53	Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutrition Research, 2015, 35, 346-356.	1.3	14
54	Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets. Journal of Nutritional Biochemistry, 2017, 43, 116-124.	1.9	13

#	Article	IF	CITATIONS
55	Human milk pasteurisation reduces pre-lipolysis but not digestive lipolysis and moderately decreases intestinal lipid uptake in a combination of preterm infant in vitro models. Food Chemistry, 2020, 329, 126927.	4.2	11
56	Postprandial Endotoxin Transporters LBP and sCD14 Differ in Obese vs. Overweight and Normal Weight Men during Fat-Rich Meal Digestion. Nutrients, 2020, 12, 1820.	1.7	10
57	Dietary lipid emulsions and endotoxemia. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D306.	0.6	9
58	Produits laitiers et inflammation métaboliqueÂ: quels liens en phase postprandiale et à long termeÂ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 25-38.	0.2	8
59	Nutritional Properties of Milk Lipids. , 2017, , 435-452.		8
60	Dietary lipids and cardiometabolic health: a new vision of structure–activity relationship. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 451-459.	1.3	7
61	Impact de la structure émulsionnée des lipides sur le devenir métabolique des acides gras alimentaires. Cahiers De Nutrition Et De Dietetique, 2016, 51, 238-247.	0.2	5
62	Postprandial Triglycerideâ€Rich Lipoproteins from Type 2 Diabetic Women Stimulate Platelet Activation Regardless ofÂthe Fat Source in the Meal. Molecular Nutrition and Food Research, 2020, 64, 2000694.	1.5	5
63	Rapeseed Lecithin Increases Lymphatic Lipid Output and α-Linolenic Acid Bioavailability in Rats. Journal of Nutrition, 2020, 150, 2900-2911.	1.3	5
64	Intérêt de la phase postprandiale pour la santé de l'homme. Bulletin De L'Academie Nationale De Medecine, 2013, 197, 65-78.	0.0	5
65	Homogeneous triacylglycerol tracers have an impact on the thermal and structural properties of dietary fat and its lipolysis rate under simulated physiological conditions. Chemistry and Physics of Lipids, 2019, 225, 104815.	1.5	4
66	Impacts métaboliques et inflammatoires des matières grasses émulsionnées. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D203.	0.6	3
67	Metabolic impact of dietary lipids: towards a role of unabsorbed lipid residues?. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 9.	0.6	2
68	Role of the Matrix on the Digestibility of Dairy Fat and Health Consequences. , 2020, , 153-202.		2
69	A meal rich in palm oil or butter modifies the sphingolipid profile of postprandial triglyceride-rich lipoproteins from type 2 diabetic women. Biochimie, 2022, 203, 11-19.	1.3	2
70	Granulométrie des globules gras du lait humain. Cahiers De Nutrition Et De Dietetique, 2006, 41, 239-246.	0.2	1
71	Bioavailability and metabolism of dietary lipids. , 2020, , 45-92.		1

5