Yehuda Ben-Shahar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic architecture of larval aggregation behavior in <i>Drosophila</i> . Journal of Neurogenetics, 2021, 35, 274-284.	1.4	5
2	The <i>foraging</i> gene as a modulator of division of labour in social insects. Journal of Neurogenetics, 2021, 35, 168-178.	1.4	15
3	Genetic and viral approaches to record or manipulate neurons in insects. Current Opinion in Insect Science, 2021, 48, 79-88.	4.4	4
4	The neurogenetics of sexually dimorphic behaviors from a postdevelopmental perspective. Genes, Brain and Behavior, 2020, 19, e12623.	2.2	9
5	The gut microbiome defines social group membership in honey bee colonies. Science Advances, 2020, 6, .	10.3	55
6	Brain microRNAs among social and solitary bees. Royal Society Open Science, 2020, 7, 200517.	2.4	13
7	The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response. PLoS Genetics, 2019, 15, e1008288.	3.5	16
8	RNA editing is abundant and correlates with task performance in a social bumblebee. Nature Communications, 2019, 10, 1605.	12.8	57
9	The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process. ELife, 2019, 8, .	6.0	21
10	The Impact of Environmental Mn Exposure on Insect Biology. Frontiers in Genetics, 2018, 9, 70.	2.3	30
11	The synaptic action of Degenerin/Epithelial sodium channels. Channels, 2018, 12, 262-275.	2.8	17
12	<i>Drosophila</i> divalent metal ion transporter <i>Malvolio</i> is required in dopaminergic neurons for feeding decisions. Genes, Brain and Behavior, 2017, 16, 506-514.	2.2	18
13	The <i>Drosophila</i> Postsynaptic DEG/ENaC Channel <i>ppk29</i> Contributes to Excitatory Neurotransmission. Journal of Neuroscience, 2017, 37, 3171-3180.	3.6	19
14	Epigenetic switch turns on genetic behavioral variations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12365-12367.	7.1	3
15	Function and evolution of microRNAs in eusocial Hymenoptera. Frontiers in Genetics, 2015, 6, 193.	2.3	15
16	Negative impact of manganese on honeybee foraging. Biology Letters, 2015, 11, 20140989.	2.3	63
17	The neural basis for insect pheromonal communication. Current Opinion in Insect Science, 2015, 12, 86-92.	4.4	15
18	Feminization of pheromone-sensing neurons affects mating decisions in <i>Drosophila</i> males. Biology Open, 2014, 3, 152-160.	1.2	14

Yehuda Ben-Shahar

#	Article	IF	CITATIONS
19	A <i>piggyBac</i> route to transgenic honeybees. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8708-8709.	7.1	8
20	Chemosensory Functions for Pulmonary Neuroendocrine Cells. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 637-646.	2.9	113
21	Natural antisense transcripts regulate the neuronal stress response and excitability. ELife, 2014, 3, e01849.	6.0	19
22	Computational identification of operon-like transcriptional loci in eukaryotes. Computers in Biology and Medicine, 2013, 43, 738-743.	7.0	1
23	The Genetic Architecture of Degenerin/Epithelial Sodium Channels in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2013, 3, 441-450.	1.8	85
24	ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1002587.	3.5	128
25	Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes, Brain and Behavior, 2012, 11, 660-670.	2.2	87
26	Sensory Functions for Degenerin/Epithelial Sodium Channels (DEG/ENaC). Advances in Genetics, 2011, 76, 1-26.	1.8	74
27	The Drosophila Gene CheB42a Is a Novel Modifier of Deg/ENaC Channel Function. PLoS ONE, 2010, 5, e9395.	2.5	25
28	TRPA channels distinguish gravity sensing from hearing in Johnston's organ. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13606-13611.	7.1	137
29	Motile Cilia of Human Airway Epithelia Are Chemosensory. Science, 2009, 325, 1131-1134.	12.6	618
30	Eukaryotic operon-like transcription of functionally related genes in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 222-227.	7.1	49
31	Genomic dissection of behavioral maturation in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16068-16075.	7.1	216
32	Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15911-15915.	7.1	157
33	The foraging gene, behavioral plasticity, and honeybee division of labor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 987-994.	1.6	79
34	Candidate genes for behavioural ecology. Trends in Ecology and Evolution, 2005, 20, 96-104.	8.7	214
35	Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. Journal of Experimental Biology, 2004, 207, 3281-3288.	1.7	108
36	cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. Journal of Experimental Biology, 2003, 206, 2507-2515.	1.7	157

Yehuda Ben-Shahar

#	Article	IF	CITATIONS
37	Influence of Gene Action Across Different Time Scales on Behavior. Science, 2002, 296, 741-744.	12.6	454
38	Social behavior and comparative genomics: new genes or new gene regulation?. Genes, Brain and Behavior, 2002, 1, 197-203.	2.2	89
39	Satiation differentially affects performance in a learning assay by nurse and forager honey bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 891-899.	1.6	41
40	Logistic growth curve analysis in associative learning data. Animal Cognition, 2001, 3, 185-189.	1.8	24
41	Differences in performance on a reversal learning test and division of labor in honey bee colonies. Animal Cognition, 2000, 3, 119-125.	1.8	34