
## Jason B Love

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811127/publications.pdf Version: 2024-02-01



LASON BLOVE

| #  | Article                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Solvent extraction: the coordination chemistry behind extractive metallurgy. Chemical Society Reviews, 2014, 43, 123-134.                                                                                                                                                                                                | 38.1 | 364       |
| 2  | Reduction and selective oxo group silylation of the uranyl dication. Nature, 2008, 451, 315-317.                                                                                                                                                                                                                         | 27.8 | 257       |
| 3  | Pentavalent uranyl complexes. Coordination Chemistry Reviews, 2009, 253, 1973-1978.                                                                                                                                                                                                                                      | 18.8 | 211       |
| 4  | Challenges and opportunities in the recovery of gold from electronic waste. RSC Advances, 2020, 10, 4300-4309.                                                                                                                                                                                                           | 3.6  | 159       |
| 5  | Uranyl oxo activation and functionalization by metal cation coordination. Nature Chemistry, 2010, 2, 1056-1061.                                                                                                                                                                                                          | 13.6 | 153       |
| 6  | Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nature Chemistry, 2012, 4, 221-227.                                                                                                                                                                             | 13.6 | 149       |
| 7  | Selective Oxo Functionalization of the Uranyl Ion with 3d Metal Cations. Journal of the American Chemical Society, 2006, 128, 9610-9611.                                                                                                                                                                                 | 13.7 | 130       |
| 8  | A Simple Primary Amide for the Selective Recovery of Gold from Secondary Resources. Angewandte Chemie - International Edition, 2016, 55, 12436-12439.                                                                                                                                                                    | 13.8 | 116       |
| 9  | Singleâ€Electron Uranyl Reduction by a Rareâ€Earth Cation. Angewandte Chemie - International Edition, 2011, 50, 887-890.                                                                                                                                                                                                 | 13.8 | 115       |
| 10 | Oxo-Functionalization and Reduction of the Uranyl Ion through Lanthanide-Element Bond Homolysis:<br>Synthetic, Structural, and Bonding Analysis of a Series of Singly Reduced Uranyl–Rare Earth<br>5f <sup>1</sup> -4f <sup><i>n</i></sup> Complexes. Journal of the American Chemical Society, 2013, 135,<br>3841-3854. | 13.7 | 107       |
| 11 | Uranyl Complexation by a Schiff-Base, Polypyrrolic Macrocycle. Inorganic Chemistry, 2004, 43, 8206-8208.                                                                                                                                                                                                                 | 4.0  | 100       |
| 12 | Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication,<br>[U <sup>VI</sup> O <sub>2</sub> ] <sup>2+</sup> . Chemical Reviews, 2019, 119, 10595-10637.                                                                                                                               | 47.7 | 96        |
| 13 | Dioxygen Reduction at Dicobalt Complexes of a Schiff Base Calixpyrrole Ligand. Angewandte Chemie -<br>International Edition, 2007, 46, 584-586.                                                                                                                                                                          | 13.8 | 95        |
| 14 | A macrocyclic approach to transition metal and uranyl Pacman complexes. Chemical Communications, 2009, , 3154.                                                                                                                                                                                                           | 4.1  | 95        |
| 15 | Organometallic neptunium(III) complexes. Nature Chemistry, 2016, 8, 797-802.                                                                                                                                                                                                                                             | 13.6 | 88        |
| 16 | Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process.<br>Separation and Purification Technology, 2021, 263, 118400.                                                                                                                                                             | 7.9  | 78        |
| 17 | Macrocyclic diiminodipyrromethane complexes: structural analogues of Pac-Man porphyrins.<br>Chemical Communications, 2003, , 2508-2509.                                                                                                                                                                                  | 4.1  | 75        |
| 18 | Inner-sphere vs. outer-sphere reduction of uranyl supported by a redox-active, donor-expanded dipyrrin. Chemical Science, 2017, 8, 108-116.                                                                                                                                                                              | 7.4  | 64        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Encapsulation of a Magnesium Hydroxide Cubane by a Bowl-Shaped Polypyrrolic Schiff Base<br>Macrocycle. Journal of the American Chemical Society, 2011, 133, 7320-7323.                                                      | 13.7 | 61        |
| 20 | Design and Synthesis of Binucleating Macrocyclic Clefts Derived from Schiff-Base Calixpyrroles.<br>Chemistry - A European Journal, 2007, 13, 3707-3723.                                                                     | 3.3  | 60        |
| 21 | Binuclear Cobalt Complexes of Schiff-Base Calixpyrroles and Their Roles in the Catalytic Reduction of Dioxygen. Inorganic Chemistry, 2009, 48, 5195-5207.                                                                   | 4.0  | 60        |
| 22 | Tailoring dicobalt Pacman complexes of Schiff-base calixpyrroles towards dioxygenreduction catalysis. Chemical Communications, 2010, 46, 710-712.                                                                           | 4.1  | 59        |
| 23 | Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chemical Communications, 2013, 49, 1891.                                                                                              | 4.1  | 55        |
| 24 | Switchable π-coordination and C–H metallation in small-cavity macrocyclic uranium and thorium complexes. Chemical Science, 2014, 5, 756-765.                                                                                | 7.4  | 53        |
| 25 | New Chemistry from an Old Reagent: Mono- and Dinuclear Macrocyclic Uranium(III) Complexes from<br>[U(BH4)3(THF)2]. Journal of the American Chemical Society, 2014, 136, 10218-10221.                                        | 13.7 | 53        |
| 26 | Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion. Inorganic Chemistry, 2015, 54, 3702-3710.                                                                                                           | 4.0  | 51        |
| 27 | Oxo Group Protonation and Silylation of Pentavalent Uranyl Pacman Complexes. Angewandte Chemie -<br>International Edition, 2011, 50, 9456-9458.                                                                             | 13.8 | 50        |
| 28 | Controlled Deprotection and Reorganization of Uranyl Oxo Groups in a Binuclear Macrocyclic<br>Environment. Angewandte Chemie - International Edition, 2012, 51, 12584-12587.                                                | 13.8 | 47        |
| 29 | Double-pillared cobalt Pacman complexes: synthesis, structures and oxygen reduction catalysis.<br>Dalton Transactions, 2012, 41, 65-72.                                                                                     | 3.3  | 46        |
| 30 | Reduction of carbon dioxide and organic carbonyls by hydrosilanes catalysed by the perrhenate anion. Catalysis Science and Technology, 2017, 7, 2838-2845.                                                                  | 4.1  | 42        |
| 31 | Uranyl to Uranium(IV) Conversion through Manipulation of Axial and Equatorial Ligands. Journal of the American Chemical Society, 2018, 140, 3378-3384.                                                                      | 13.7 | 42        |
| 32 | Catalytic one-electron reduction of uranyl( <scp>vi</scp> ) to Group 1 uranyl( <scp>v</scp> ) complexes via Al( <scp>iii</scp> ) coordination. Chemical Communications, 2015, 51, 5876-5879.                                | 4.1  | 40        |
| 33 | Subtle Interactions and Electron Transfer between U <sup>III</sup> , Np <sup>III</sup> , or<br>Pu <sup>III</sup> and Uranyl Mediated by the Oxo Group. Angewandte Chemie - International Edition,<br>2016, 55, 12797-12801. | 13.8 | 40        |
| 34 | Oxo–Groupâ€14â€Element Bond Formation in Binuclear Uranium(V) Pacman Complexes. Chemistry - A<br>European Journal, 2013, 19, 10287-10294.                                                                                   | 3.3  | 38        |
| 35 | Ligand Modifications for Tailoring the Binuclear Microenvironments in Schiff-Base Calixpyrrole<br>Pacman Complexes. Inorganic Chemistry, 2009, 48, 7491-7500.                                                               | 4.0  | 37        |
| 36 | A DFT study of the single electron reduction and silylation of the U–O bond of the uranyl dication in a macrocyclic environment. Chemical Communications, 2009, , 2402.                                                     | 4.1  | 36        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Uranium rhodium bonding in heterometallic complexes. Dalton Transactions, 2017, 46, 5540-5545.                                                                                                                                          | 3.3  | 36        |
| 38 | Tuneable separation of gold by selective precipitation using a simple and recyclable diamide. Nature Communications, 2021, 12, 6258.                                                                                                    | 12.8 | 36        |
| 39 | Computational Density Functional Study of Polypyrrolic Macrocycles: Analysis of Actinyl-Oxo to 3d<br>Transition Metal Bonding. Inorganic Chemistry, 2008, 47, 11583-11592.                                                              | 4.0  | 35        |
| 40 | Uranium(III) Coordination Chemistry and Oxidation in a Flexible Small-Cavity Macrocycle.<br>Organometallics, 2015, 34, 2114-2117.                                                                                                       | 2.3  | 35        |
| 41 | Early–late, mixed-metal compounds supported by amidophosphine ligands. Dalton Transactions, 2004, ,<br>1960-1970.                                                                                                                       | 3.3  | 33        |
| 42 | Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle.<br>Inorganic Chemistry, 2011, 50, 3116-3126.                                                                                          | 4.0  | 32        |
| 43 | Axially Symmetric Uâ^'Oâ^'Ln―and Uâ^'Oâ^'U ontaining Molecules from the Control of Uranyl Reduction<br>with Simple fâ€Block Halides. Angewandte Chemie - International Edition, 2017, 56, 10775-10779.                                  | 13.8 | 32        |
| 44 | Evaluation of Simple Amides in the Selective Recovery of Gold from Secondary Sources by Solvent Extraction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15019-15029.                                                            | 6.7  | 32        |
| 45 | Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols. Chemistry - an Asian Journal, 2019, 14, 3782-3790.                                                                                                                | 3.3  | 30        |
| 46 | Controlling uranyl oxo group interactions to group 14 elements using polypyrrolic Schiff-base macrocyclic ligands. Dalton Transactions, 2016, 45, 15902-15909.                                                                          | 3.3  | 29        |
| 47 | Double uranium oxo cations derived from uranyl by borane or silane reduction. Chemical<br>Communications, 2018, 54, 3839-3842.                                                                                                          | 4.1  | 29        |
| 48 | Differential uranyl(v) oxo-group bonding between the uranium and metal cations from groups 1, 2, 4,<br>and 12; a high energy resolution X-ray absorption, computational, and synthetic study. Chemical<br>Science, 2019, 10, 9740-9751. | 7.4  | 29        |
| 49 | Co-linear, double-uranyl coordination by an expanded Schiff-base polypyrrole macrocycle. Dalton<br>Transactions, 2012, 41, 6595.                                                                                                        | 3.3  | 28        |
| 50 | Anion Receptor Design: Exploiting Outer-Sphere Coordination Chemistry To Obtain High Selectivity for Chloridometalates over Chloride. Inorganic Chemistry, 2015, 54, 8685-8692.                                                         | 4.0  | 28        |
| 51 | Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium( <scp>iii</scp> )<br>borohydride complexes. Chemical Science, 2017, 8, 3609-3617.                                                                       | 7.4  | 27        |
| 52 | Towards dipyrrins: oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes.<br>Dalton Transactions, 2015, 44, 2066-2070.                                                                                        | 3.3  | 26        |
| 53 | Controlled Photocatalytic Hydrocarbon Oxidation by Uranyl Complexes. ChemCatChem, 2019, 11, 3786-3790.                                                                                                                                  | 3.7  | 26        |
| 54 | Using Chiral Ligand Substituents To Promote the Formation of Dinuclear, Doubleâ€6tranded Iron,<br>Manganese, and Zinc Mesocates. European Journal of Inorganic Chemistry, 2007, 2007, 5286-5293.                                        | 2.0  | 25        |

Jason B Love

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Olefin Epoxidation in Aqueous Phase Using Ionic‣iquid Catalysts. ChemSusChem, 2016, 9, 1773-1776.                                                                                                  | 6.8 | 25        |
| 56 | The Influence of the Hofmeister Bias and the Stability and Speciation of Chloridolanthanates on Their Extraction from Chloride Media. Solvent Extraction and Ion Exchange, 2016, 34, 579-593.      | 2.0 | 25        |
| 57 | Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO <sub>2</sub> . Dalton Transactions, 2019, 48, 4887-4893.            | 3.3 | 25        |
| 58 | Theoretical exploration of uranyl complexes of a designed polypyrrolic macrocycle:<br>structure/property effects of hinge size on Pacman-shaped complexes. Dalton Transactions, 2012, 41,<br>8878. | 3.3 | 24        |
| 59 | Deoxydehydration of vicinal diols and polyols catalyzed by pyridinium perrhenate salts. Catalysis<br>Science and Technology, 2017, 7, 5644-5649.                                                   | 4.1 | 23        |
| 60 | A Simple Primary Amide for the Selective Recovery of Gold from Secondary Resources. Angewandte Chemie, 2016, 128, 12624-12627.                                                                     | 2.0 | 22        |
| 61 | Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs. Chemical Communications, 2015, 51, 3399-3402.                                                 | 4.1 | 20        |
| 62 | Macrocyclic Platforms for the Construction of Tetranuclear Oxo and Hydroxo Zinc Clusters.<br>Organometallics, 2015, 34, 2608-2613.                                                                 | 2.3 | 19        |
| 63 | Benzoquinonoid-bridged dinuclear actinide complexes. Dalton Transactions, 2017, 46, 11615-11625.                                                                                                   | 3.3 | 18        |
| 64 | Proton Chelating Ligands Drive Improved Chemical Separations for Rhodium. Inorganic Chemistry, 2019, 58, 8720-8734.                                                                                | 4.0 | 18        |
| 65 | Equatorial ligand substitution by hydroxide in uranyl Pacman complexes of a Schiff-base pyrrole macrocycle. Dalton Transactions, 2010, 39, 3501.                                                   | 3.3 | 17        |
| 66 | Relativistic DFT and experimental studies of mono- and bis-actinyl complexes of an expanded Schiff-base polypyrrole macrocycle. Dalton Transactions, 2016, 45, 15910-15921.                        | 3.3 | 15        |
| 67 | Subtle Interactions and Electron Transfer between U <sup>III</sup> , Np <sup>III</sup> , or<br>Pu <sup>III</sup> and Uranyl Mediated by the Oxo Group. Angewandte Chemie, 2016, 128, 12989-12993.  | 2.0 | 15        |
| 68 | Understanding the Recovery of Rare-Earth Elements by Ammonium Salts. Metals, 2018, 8, 465.                                                                                                         | 2.3 | 15        |
| 69 | Synthesis and structures of anionic rhenium polyhydride complexes of boron–hydride ligands and their application in catalysis. Chemical Science, 2020, 11, 9994-9999.                              | 7.4 | 15        |
| 70 | A Comparison of the Selectivity of Extraction of [PtCl6]2– by Mono-, Bi-, and Tripodal Receptors That<br>Address Its Outer Coordination Sphere. Inorganic Chemistry, 2016, 55, 6247-6260.          | 4.0 | 14        |
| 71 | Mono- and Dinuclear Macrocyclic Calcium Complexes as Platforms for Mixed-Metal Complexes and Clusters. Inorganic Chemistry, 2016, 55, 840-847.                                                     | 4.0 | 14        |
| 72 | On the Extraction of HCl and H <sub>2</sub> PtCl <sub>6</sub> by Tributyl Phosphate: A Mode of Action Study. Solvent Extraction and Ion Exchange, 2017, 35, 531-548.                               | 2.0 | 14        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Interactions of vanadium( <scp>iv</scp> ) with amidoxime ligands: redox reactivity. Dalton<br>Transactions, 2018, 47, 5695-5702.                                                            | 3.3  | 14        |
| 74 | Optimization of process parameters for the selective leaching of copper, nickel and isolation of gold from obsolete mobile phone PCBs. Cleaner Engineering and Technology, 2021, 4, 100180. | 4.0  | 13        |
| 75 | Triggering Redox Activity in a Thiophene Compound: Radical Stabilization and Coordination Chemistry.<br>Angewandte Chemie - International Edition, 2017, 56, 7939-7943.                     | 13.8 | 11        |
| 76 | Earth-Abundant Mixed-Metal Catalysts for Hydrocarbon Oxygenation. Inorganic Chemistry, 2018, 57, 5915-5928.                                                                                 | 4.0  | 11        |
| 77 | Selective oxo ligand functionalisation and substitution reactivity in an oxo/catecholate-bridged<br>U <sup>IV</sup> /U <sup>IV</sup> Pacman complex. Chemical Science, 2020, 11, 7144-7157. | 7.4  | 11        |
| 78 | Tantalum Recycling by Solvent Extraction: Chloride Is Better than Fluoride. Metals, 2020, 10, 346.                                                                                          | 2.3  | 11        |
| 79 | C–H Borylation Catalysis of Heteroaromatics by a Rhenium Boryl Polyhydride. ACS Catalysis, 2021, 11,<br>7394-7400.                                                                          | 11.2 | 11        |
| 80 | The Supramolecular and Coordination Chemistry of Cobalt(II) Extraction by Phosphinic Acids.<br>European Journal of Inorganic Chemistry, 2018, 2018, 1511-1521.                              | 2.0  | 10        |
| 81 | EPR/ENDOR and Computational Study of Outer Sphere Interactions in Copper Complexes of Phenolic Oximes. Inorganic Chemistry, 2015, 54, 8465-8473.                                            | 4.0  | 9         |
| 82 | Axially Symmetric Uâ^'Oâ^'Ln―and Uâ^'Oâ^'Uâ€Containing Molecules from the Control of Uranyl Reduction<br>with Simple fâ€Block Halides. Angewandte Chemie, 2017, 129, 10915-10919.           | 2.0  | 7         |
| 83 | Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes.<br>Organometallics, 2013, 32, 6879-6882.                                                                | 2.3  | 6         |
| 84 | Inter- versus Intramolecular Structural Manipulation of a Dichromium(II) Pacman Complex through<br>Pressure Variation. Inorganic Chemistry, 2016, 55, 214-220.                              | 4.0  | 6         |
| 85 | Synthesis and complexes of a constrained-cavity Schiff-base dipyrrin macrocycle. Dalton Transactions, 2021, 50, 1610-1613.                                                                  | 3.3  | 6         |
| 86 | Selective recovery of nickel from obsolete mobile phone PCBs. Hydrometallurgy, 2022, 210, 105843.                                                                                           | 4.3  | 6         |
| 87 | Reducing the Competition: A Dual-Purpose Ionic Liquid for the Extraction of Gallium from Iron<br>Chloride Solutions. Molecules, 2020, 25, 4047.                                             | 3.8  | 5         |
| 88 | Simple Amides and Amines for the Synergistic Recovery of Rhodium from Hydrochloric Acid by Solvent<br>Extraction. Chemistry - A European Journal, 2021, 27, 8714-8722.                      | 3.3  | 5         |
| 89 | Reactions facilitated by ligand design. Dalton Transactions, 2016, 45, 15700-15701.                                                                                                         | 3.3  | 4         |
| 90 | Triggering Redox Activity in a Thiophene Compound: Radical Stabilization and Coordination Chemistry.<br>Angewandte Chemie, 2017, 129, 8047-8051.                                            | 2.0  | 4         |

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Radical Relatives: Facile Oxidation of Hetero-Diarylmethene Anions to Neutral Radicals. Inorganic<br>Chemistry, 2018, 57, 9592-9600.                      | 4.0 | 4         |
| 92 | Co-extraction of Iron and Sulfate by Bis(2,4,4-trimethylpentyl)phosphinic Acid, CYANEX®272. Solvent<br>Extraction and Ion Exchange, 2020, 38, 328-339.    | 2.0 | 4         |
| 93 | Exploring the Redox Properties of Bench-Stable Uranyl(VI) Diamido–Dipyrrin Complexes. Inorganic Chemistry, 2022, 61, 3249-3255.                           | 4.0 | 4         |
| 94 | Pressure-induced inclusion of neon in the crystal structure of a molecular Cu2(pacman) complex at 4.67 GPa. Chemical Communications, 2020, 56, 3449-3452. | 4.1 | 2         |
| 95 | Dalton Discussion 14 – Advancing the chemistry of the f-elements, 28–30 July 2014, Edinburgh. Dalton<br>Transactions, 2015, 44, 2515-2516.                | 3.3 | 1         |
| 96 | AppliedChem: Modern Challenges in the Chemical Sciences. AppliedChem, 2021, 1, 1-3.                                                                       | 1.0 | 0         |