Chandra Mouli Pavuluri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3810765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmospheric Chemistry and Physics, 2010, 10, 2663-2689.	4.9	200
2	Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmospheric Environment, 2005, 39, 999-1008.	4.1	173
3	Waterâ€soluble organic carbon, dicarboxylic acids, ketoacids, and <i>α</i> â€dicarbonyls in the tropical Indian aerosols. Journal of Geophysical Research, 2010, 115, .	3.3	130
4	Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmospheric Environment, 2010, 44, 3597-3604.	4.1	80
5	Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmospheric Chemistry and Physics, 2011, 11, 8215-8230.	4.9	79
6	Evidence for 13â€carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. Geophysical Research Letters, 2012, 39, .	4.0	76
7	A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmospheric Environment, 2006, 40, 136-146.	4.1	72
8	New Directions: Need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. Atmospheric Environment, 2010, 44, 5320-5321.	4.1	56
9	Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols. Journal of Geophysical Research, 2011, 116, .	3.3	54
10	A study on major inorganic ion composition of atmospheric aerosols at Tirupati. Journal of Hazardous Materials, 2003, 96, 217-228.	12.4	43
11	Enhanced modern carbon and biogenic organic tracers in Northeast Asian aerosols during spring/summer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2362-2371.	3.3	43
12	Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective. Science of the Total Environment, 2021, 773, 145525.	8.0	42
13	Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and 1±-dicarbonyls. Atmospheric Chemistry and Physics, 2015, 15, 7999-8012.	4.9	41
14	Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmospheric Chemistry and Physics, 2015, 15, 9883-9896.	4.9	40
15	Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. Atmospheric Chemistry and Physics, 2020, 20, 117-137.	4.9	36
16	Chemical Composition of Atmospheric Aerosol (PM10) at a Semi-arid Urban Site: Influence of Terrestrial Sources. Environmental Monitoring and Assessment, 2006, 117, 291-305.	2.7	33
17	Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Scientific Reports, 2016, 6, 27481.	3.3	32
18	Enrichment of 13C in diacids and related compounds during photochemical processing of aqueous aerosols: New proxy for organic aerosols aging. Scientific Reports, 2016, 6, 36467.	3.3	30

#	Article	IF	CITATIONS
19	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq1 1 0.	784314 rg	BT /Overlock
	12247-12256.	10.0	
20	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmospheric Chemistry and Physics, 2022, 22, 6449-6470.	4.9	25
21	Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes. Atmospheric Research, 2015, 153, 188-199.	4.1	23
22	Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC Advances, 2018, 8, 38108-38117.	3.6	17
23	Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and <i>α</i> -dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmospheric Chemistry and Physics, 2020, 20, 6841-6860.	4.9	17
24	Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols. Environmental Chemistry, 2015, 12, 338.	1.5	16
25	Determination of zinc, copper, lead and cadmium in some medicinally important leaves by differential pulse anodic stripping analysis. Journal of Trace Elements in Medicine and Biology, 2003, 17, 79-83.	3.0	15
26	Assessment of aerosol (PM10) and trace elemental interactions by Taguchi experimental design approach. Ecotoxicology and Environmental Safety, 2008, 69, 562-567.	6.0	15
27	Urea and thiourea derivatives of 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1, 2, 4]triazolo[4,3-a]pyrazine: Synthesis, characterization, antimicrobial activity and docking studies. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 922-932.	1.6	15
28	Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime. Atmospheric Environment, 2012, 62, 622-630.	4.1	14
29	Differential Pulse Anodic Stripping Voltammetric Determination of Pb, Cd, Cu, and Zn in Air, Diet, and Blood Samples: Exposure Assessment. Analytical Letters, 2005, 38, 463-475.	1.8	13
30	Monitoring of air pollution in Indian metropolitan cities: modelling and quality indexing. International Journal of Environment and Pollution, 2004, 21, 365.	0.2	12
31	Seasonal Distributions and Stable Carbon Isotope Ratios of Water-Soluble Diacids, Oxoacids, and α-Dicarbonyls in Aerosols from Sapporo: Influence of Biogenic Volatile Organic Compounds and Photochemical Aging. ACS Earth and Space Chemistry, 2018, 2, 1220-1230.	2.7	12
32	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. Environmental Research Letters, 2020, 15, 074007.	5.2	12
33	Characterization of Secondary Organic Aerosol Tracers over Tianjin, North China during Summer to Autumn. ACS Earth and Space Chemistry, 2019, 3, 2339-2352.	2.7	11
34	Seasonal changes in TC and WSOC and their 13C isotope ratios in Northeast Asian aerosols: land surface–biosphere–atmosphere interactions. Acta Geochimica, 2017, 36, 355-358.	1.7	10
35	Molecular Distributions of Diacids, Oxoacids, and <i>α</i> â€Dicarbonyls in Summer―and Winterâ€Time Fine Aerosols From Tianjin, North China: Emissions From Combustion Sources and Aqueous Phase Secondary Formation. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	10
36	Characteristics, Seasonality, and Secondary Formation Processes of Diacids and Related Compounds in Fine Aerosols During Warm and Cold Periods: Yearâ€Round Observations at Tianjin, North China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035435.	3.3	10

#	Article	IF	CITATIONS
37	Seasonal Characteristics of Biogenic Secondary Organic Aerosols Over Chichijima Island in the Western North Pacific: Impact of Biomass Burning Activity in East Asia. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032987.	3.3	7
38	Large contribution of fine carbonaceous aerosols from municipal waste burning inferred from distributions of diacids and fatty acids. Environmental Research Communications, 2019, 1, 071005.	2.3	5
39	Compound-Specific Stable Carbon Isotope Ratios of Terrestrial Biomarkers in Urban Aerosols from Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 1896-1904.	2.7	5
40	An efficient microwave-promoted three-component synthesis of thiazolo[3,2-a]pyrimidines catalyzed by SiO2–ZnBr2 and antimicrobial activity evaluation. Chemistry of Heterocyclic Compounds, 2019, 55, 266-274.	1.2	5
41	Year-round observations of stable carbon isotopic composition of carboxylic acids, oxoacids and α-Dicarbonyls in fine aerosols at Tianjin, North China: Implications for origins and aging. Science of the Total Environment, 2022, 834, 155385.	8.0	5
42	Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China. Environmental Pollution, 2021, 291, 118114.	7.5	3
43	Organic Aerosols in South and East Asia: Composition and Sources. Springer Remote Sensing/photogrammetry, 2018, , 379-408.	0.4	1
44	Characteristics and seasonality of trace elements in fine aerosols from Tianjin, North China during 2018-2019. Environmental Advances, 2022, 9, 100263.	4.8	1