Jean-Philippe Tetienne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging Current Paths in Silicon Photovoltaic Devices with a Quantum Diamond Microscope. Physical Review Applied, 2022, 18, .	1.5	9
2	Polarization Transfer to External Nuclear Spins Using Ensembles of Nitrogen-Vacancy Centers. Physical Review Applied, 2021, 15, .	1.5	19
3	Quantum sensors go flat. Nature Physics, 2021, 17, 1074-1075.	6.5	20
4	Prospects for nuclear spin hyperpolarization of molecular samples using nitrogen-vacancy centers in diamond. Physical Review B, 2021, 103, .	1.1	19
5	Widefield quantum microscopy with nitrogen-vacancy centers in diamond: Strengths, limitations, and prospects. Journal of Applied Physics, 2021, 130, .	1.1	46
6	Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
7	An integrated widefield probe for practical diamond nitrogen-vacancy microscopy. Applied Physics Letters, 2021, 119, .	1.5	5
8	Investigation of charge carrier trapping in H-terminated diamond devices. Applied Physics Letters, 2020, 117, 143507.	1.5	4
9	Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements. Physical Review Applied, 2020, 14, .	1.5	32
10	Imaging Domain Reversal in an Ultrathin Van der Waals Ferromagnet. Advanced Materials, 2020, 32, e2003314.	11.1	47
11	Quantum Magnetic Imaging of Iron Biomineralization in Teeth of the Chiton <i>Acanthopleura hirtosa</i> . Small Methods, 2020, 4, 1900754.	4.6	27
12	Laser Modulation of Superconductivity in a Cryogenic Wide-field Nitrogen-Vacancy Microscope. Nano Letters, 2020, 20, 1855-1861.	4.5	28
13	Enhanced Widefield Quantum Sensing with Nitrogen-Vacancy Ensembles Using Diamond Nanopillar Arrays. ACS Applied Materials & Interfaces, 2020, 12, 13421-13427.	4.0	33
14	Real-time detection and identification of nematode eggs genus and species through optical imaging. Scientific Reports, 2020, 10, 7219.	1.6	14
15	Comparison of different methods of nitrogen-vacancy layer formation in diamond for wide-field quantum microscopy. Physical Review Materials, 2020, 4, .	0.9	14
16	Imaging Graphene Field-Effect Transistors on Diamond Using Nitrogen-Vacancy Microscopy. Physical Review Applied, 2019, 12, .	1.5	18
17	Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials, 2019, 9, 1360.	1.9	25
18	Nonvanishing effect of detuning errors in dynamical-decoupling-based quantum sensing experiments. Physical Review A, 2019, 99, .	1.0	13

#	Article	IF	CITATIONS
19	Apparent delocalization of the current density in metallic wires observed with diamond nitrogen-vacancy magnetometry. Physical Review B, 2019, 99, .	1.1	14
20	Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors. Nano Letters, 2019, 19, 4543-4550.	4.5	51
21	Magnetic Materials: Rapid, Highâ€Resolution Magnetic Microscopy of Single Magnetic Microbeads (Small) Tj ET	Qq <u>1</u> 10.7	84314 rgBT /(
22	Intrinsic fluorescence from cellulose nanofibers and nanoparticles at cell friendly wavelengths. APL Photonics, 2019, 4, 020803.	3.0	15
23	Rapid, Highâ€Resolution Magnetic Microscopy of Single Magnetic Microbeads. Small, 2019, 15, 1805159.	5.2	16
24	Quantum Bath Control with Nuclear Spin State Selectivity via Pulse-Adjusted Dynamical Decoupling. Physical Review Letters, 2019, 123, 210401.	2.9	8
25	Evidence for Primal sp ² Defects at the Diamond Surface: Candidates for Electron Trapping and Noise Sources. Advanced Materials Interfaces, 2019, 6, 1801449.	1.9	75
26	Imaging with NV ensembles: beyond magnetometry. , 2019, , .		0
27	High precision single qubit tuning via thermo-magnetic field control. Applied Physics Letters, 2018, 112,	1.5	8
28	Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 2018, 97, .	1.1	76
29	Manipulating the Quantum Coherence of Optically Trapped Nanodiamonds. ACS Photonics, 2018, 5, 4491-4496.	3.2	8
30	Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nature Electronics, 2018, 1, 502-507.	13.1	77
31	Proximity-Induced Artefacts in Magnetic Imaging with Nitrogen-Vacancy Ensembles in Diamond. Sensors, 2018, 18, 1290.	2.1	18
32	Quantum probe hyperpolarisation of molecular nuclear spins. Nature Communications, 2018, 9, 1246.	5.8	53
33	Magnetic noise from ultrathin abrasively deposited materials on diamond. Physical Review Materials, 2018, 2, .	0.9	10
34	Infrared induced photo-dynamics of NV centres in optically trapped nanodiamond. , 2018, , .		0
35	Quantum imaging of current flow in graphene. Science Advances, 2017, 3, e1602429.	4.7	185
36	Environmentally Mediated Coherent Control of a Spin Qubit in Diamond. Physical Review Letters, 2017, 118, 167204.	2.9	8

#	Article	IF	CITATIONS
37	Microwave-free nuclear magnetic resonance at molecular scales. Nature Communications, 2017, 8, 15950.	5.8	26
38	Anticrossing Spin Dynamics of Diamond Nitrogen-Vacancy Centers and All-Optical Low-Frequency Magnetometry. Physical Review Applied, 2016, 6, .	1.5	28
39	Wide-band nanoscale magnetic resonance spectroscopy using quantum relaxation of a single spin in diamond. Physical Review B, 2016, 94, .	1.1	44
40	Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mo> with a scanning NV magnetometer<mml:math< td=""><td>»><td>ırow><mml:r< td=""></mml:r<></td></td></mml:math<></mml:mo></mml:mrow></mml:math 	»> <td>ırow><mml:r< td=""></mml:r<></td>	ırow> <mml:r< td=""></mml:r<>

JEAN-PHILIPPE TETIENNE

#	Article	IF	CITATIONS
55	Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New Journal of Physics, 2012, 14, 103033.	1.2	242
56	Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons. Optics Express, 2012, 20, 13738.	1.7	8
57	Mid-infrared field concentration of electrically generated surface plasmons polaritons. , 2012, , .		О
58	Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Applied Physics Letters, 2012, 100, .	1.5	177
59	Enhancement of optical processes in coupled plasmonic nanocavities [Invited]. Applied Optics, 2011, 50, G56.	2.1	9
60	Design of an integrated coupler for the electrical generation of surface plasmon polaritons. Optics Express, 2011, 19, 18155.	1.7	14
61	Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. Optics Express, 2011, 19, 22113.	1.7	29
62	Coupled Nanocavity-Grating Resonances: Large Plasmonic Enhancement of Nonlinear Optical Phenomena. , 2011, , .		0
63	Off-axis and multi-directional plasmonic lenses. , 2011, , .		Ο
64	Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 2011, 334, 333-337.	6.0	7,240
65	Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators. New Journal of Physics, 2011, 13, 053057.	1.2	29
66	Molding Optical Wavefronts Using Phase Discontinuities. , 2011, , .		0
67	Near-field microscopy study of propagation and focusing of designer's surface plasmons polaritons at mid-infrared wavelength. , 2011, , .		Ο
68	Quantum Cascade Lasers with Integrated Multi-Beam Plasmonic Collimators. , 2011, , .		0
69	Mid-infrared direct injection and sub-wavelength focusing of designer's surface plasmons polaritons. , 2011, , .		Ο
70	Injection of midinfrared surface plasmon polaritons with an integrated device. Applied Physics Letters, 2010, 97, .	1.5	16
71	Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings. Nano Letters, 2010, 10, 4880-4883.	4.5	207
72	Semiconductor Surface Plasmon Sources. Physical Review Letters, 2010, 104, 226806.	2.9	49

0

#	Article	IF	CITATIONS
73	Mid-infrared direct coupling of surface-plasmon polaritons. , 2010, , .		0

A semiconductor device for surface-plasmon generation. , 2010, , .