
Luciano Bani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/380857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Use of Focal Species in Designing a Habitat Network for a Lowland Area of Lombardy, Italy. Conservation Biology, 2002, 16, 826-831.	4.7	81
2	A Multiscale Method for Selecting Indicator Species and Priority Conservation Areas: a Case Study for Broadleaved Forests in Lombardy, Italy. Conservation Biology, 2006, 20, 512-526.	4.7	64
3	Polymorphism at the <scp> <i>Clock </i> </scp> gene predicts phenology of longâ€distance migration in birds. Molecular Ecology, 2015, 24, 1758-1773.	3.9	57
4	How to manage hedgerows as effective ecological corridors for mammals: A two-species approach. Agriculture, Ecosystems and Environment, 2016, 231, 283-290.	5.3	45
5	Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Climate Research, 2011, 49, 131-141.	1.1	38
6	How does forest species specialization affect the application of the island biogeography theory in fragmented landscapes?. Journal of Biogeography, 2017, 44, 1041-1052.	3.0	33
7	Population and individualâ€scale responses to patch size, isolation and quality in the hazel dormouse. Ecosphere, 2014, 5, 1-21.	2.2	32
8	Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways?. Landscape Ecology, 2018, 33, 1741-1756.	4.2	28
9	Local and landscape drivers of butterfly richness and abundance in a human-dominated area. Agriculture, Ecosystems and Environment, 2018, 254, 138-148.	5.3	27
10	Winners and losers: How the elevational range of breeding birds on Alps has varied over the past four decades due to climate and habitat changes. Ecology and Evolution, 2019, 9, 1289-1305.	1.9	27
11	Assessment of population trends of common breeding birds in Lombardy, Northern Italy, 1992–2007. Ethology Ecology and Evolution, 2009, 21, 27-44.	1.4	26
12	Ecological connectivity assessment in a strongly structured fire salamander (<i>Salamandra) Tj ETQq0 0 0 rgBT /0</i>	Overlock 1	0 <u>Jf</u> 50 302
13	Detecting a hierarchical genetic population structure: the case study of the Fire Salamander (<i>Salamandra salamandra</i>) in Northern Italy. Ecology and Evolution, 2015, 5, 743-758.	1.9	21
14	Ecological network design from occurrence data by simulating species perception of the landscape. Landscape Ecology, 2018, 33, 275-287.	4.2	21
15	Population genetic structure and sex-biased dispersal of the hazel dormouse (Muscardinus) Tj ETQq1 1 0.784314 2017, 18, 261-274.	4 rgBT /Ove 1.5	erlock 10 Tf 18
16	Combining ensemble models and connectivity analyses to predict wolf expected dispersal routes through a lowland corridor. PLoS ONE, 2020, 15, e0229261.	2.5	17
17	A method to evaluate the combined effect of tree species composition and woodland structure on indicator birds. Ecological Indicators, 2015, 55, 44-51.	6.3	14

18Landscape determinants of genetic differentiation, inbreeding and genetic drift in the hazel dormouse
(Muscardinus avellanarius). Conservation Genetics, 2018, 19, 283-296.1.514

Luciano Bani

#	Article	IF	CITATIONS
19	Identification of Putative Wintering Areas and Ecological Determinants of Population Dynamics of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) Breeding in Northern Italy. Avian Conservation and Ecology, 2011, 6, .	0.8	13
20	Species specialization limits movement ability and shapes ecological networks: the case study of 2 forest mammals. Environmental Epigenetics, 2019, 65, 237-249.	1.8	13
21	Factors affecting the crop damage by wild boar (Sus scrofa) and effects of population control in the Ticino and Lake Maggiore Park (North-western Italy). Mammalian Biology, 2021, 101, 451-463.	1.5	13
22	Can the effect of species ecological traits on birds' altitudinal changes differ between geographic areas?. Acta Oecologica, 2018, 92, 26-34.	1.1	11
23	Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study. Insects, 2021, 12, 462.	2.2	11
24	Large-scale spatial distribution of breeding Barn SwallowsHirundo rusticain relation to cattle farming. Bird Study, 2011, 58, 495-505.	1.0	9
25	Temporal Variation of Ecological Factors Affecting Bird Species Richness in Urban and Peri-Urban Forests in a Changing Environment: A Case Study from Milan (Northern Italy). Forests, 2017, 8, 507.	2.1	9
26	Scale-dependent resource use in the Euphydryas aurinia complex. Journal of Insect Conservation, 2018, 22, 593-605.	1.4	9
27	En route to the North: modelling crested porcupine habitat suitability and dispersal flows across a highly anthropized area in northern Italy. Mammalian Biology, 2021, 101, 1067-1077.	1.5	8
28	Species Traits Drive Long-Term Population Trends of Common Breeding Birds in Northern Italy. Animals, 2021, 11, 3426.	2.3	8
29	Population trend assessment on a large spatial scale: integrating data collected with heterogeneous sampling schemes by means of habitat modelling. Ethology Ecology and Evolution, 2008, 20, 141-153.	1.4	7
30	Practical insights to select focal species and design priority areas for conservation. Ecological Indicators, 2020, 108, 105767.	6.3	7
31	Partial recovery of an African rainforest bird community 35 years after logging. Ethology Ecology and Evolution, 2008, 20, 391-399.	1.4	6
32	The spread of exotic fish species in Italian rivers and their effect on native fish fauna since 1990. Biodiversity, 2020, , 1-9.	1.1	5
33	Usefulness of coarse grain data on forest management to improve bird abundance models. Italian Journal of Zoology, 2010, 77, 71-80.	0.6	4
34	From Island Biogeography to Conservation: A Multi-Taxon and Multi-Taxonomic Rank Approach in the Tuscan Archipelago. Land, 2021, 10, 486.	2.9	4
35	Decoupling residents and dispersers from detection data improve habitat selection modelling: the case study of the wolf in a natural corridor. Ethology Ecology and Evolution, 0, , 1-19.	1.4	4
36	Main roads and land cover shaped the genetic structure of a Mediterranean island wild boar population. Ecology and Evolution, 2022, 12, e8804.	1.9	4

Luciano Bani

#	Article	IF	CITATIONS
37	Effectiveness of the system of protected areas of Lombardy (Northern Italy) in preserving breeding birds. Bird Conservation International, 2018, 28, 475-492.	1.3	3
38	New Evidence on the Linkage of Population Trends and Species Traits to Long-Term Niche Changes. Birds, 2022, 3, 149-171.	1.4	3
39	Population trends from count data: Handling environmental bias, overdispersion and excess of zeroes. Ecological Informatics, 2022, 69, 101629.	5.2	3
40	Can antioxidant responses be induced by habitat fragmentation process?. Oikos, 0, , .	2.7	3
41	An ecological network for the Milan region based on focal species. , 2004, , 188-199.		2
42	Hierarchies and Dominance Behaviors in European Pond Turtle (Emys orbicularis galloitalica) Hatchlings in a Controlled Environment. Animals, 2020, 10, 1510.	2.3	2
43	The distribution and richness of the Italian riverine fish provided by the BioFresh database. Folia Zoologica, 2019, 68, 225.	0.9	2
44	Long-term dynamic of nestedness in bird assemblages inhabiting fragmented landscapes. Landscape Ecology, 2022, 37, 1543-1558.	4.2	2
45	Microhabitat Selection and Population Density of Nehalennia Speciosa Charpentier, 1840 (Odonata:) Tj ETQq1 1	0.784314	rgBT /Overl
46	Quantitative selection of focal birds and mammals in higherâ€tier risk assessment: An application to	2.9	1

rice cultivations. Integrated Environmental Assessment and Management, 2022, 18, 1020-1034. 46