
Fiona P Brennan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of pasture species and ruminant urine on N ₂ O emissions and nitrogen transforming microbial communities in soil mesocosms. New Zealand Journal of Agricultural Research, 2022, 65, 42-62.	0.9	6
2	Comparison of two image analysis software for root trait analysis of single and mixed species grasslands. The Plant Phenome Journal, 2022, 5, .	1.0	5
3	Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils. Scientific Reports, 2022, 12, 2602.	1.6	10
4	Linking long-term soil phosphorus management to microbial communities involved in nitrogen reactions. Biology and Fertility of Soils, 2022, 58, 389-402.	2.3	3
5	Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biology and Biochemistry, 2022, 168, 108637.	4.2	18
6	Assessing the long-term impact of urease and nitrification inhibitor use on microbial community composition, diversity and function in grassland soil. Soil Biology and Biochemistry, 2022, 170, 108709.	4.2	17
7	Harnessing agricultural microbiomes for human pathogen control. ISME Communications, 2022, 2, .	1.7	8
8	Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agriculture, Ecosystems and Environment, 2021, 311, 107319.	2.5	31
9	Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods, 2021, 10, 2072.	1.9	6
10	An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization. Frontiers in Microbiology, 2020, 11, 682.	1.5	3
11	Variability in growth responses of non-O157 EHEC isolates in leafy vegetables, sprouted seeds and soil extracts occurs at the isolate level. FEMS Microbiology Letters, 2020, 367, .	0.7	6
12	The effect of carbon availability on N2O emissions is moderated by soil phosphorus. Soil Biology and Biochemistry, 2020, 142, 107726.	4.2	18
13	Community-Driven Metadata Standards for Agricultural Microbiome Research. Phytobiomes Journal, 2020, 4, 115-121.	1.4	21
14	Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiology, 2020, 2, acmi000143.	0.2	68
15	Microbial Contamination of Fresh Produce: What, Where, and How?. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1727-1750.	5.9	143
16	Influence of Plant Species, Tissue Type, and Temperature on the Capacity of Shiga-Toxigenic <i>Escherichia coli</i> To Colonize, Grow, and Be Internalized by Plants. Applied and Environmental Microbiology, 2019, 85, .	1.4	23
17	Soil bacterial community structure and functional responses across a long-term mineral phosphorus (Pi) fertilisation gradient differ in grazed and cut grasslands. Applied Soil Ecology, 2019, 138, 134-143.	2.1	38
18	Antibiotic resistance in grass and soil. Biochemical Society Transactions, 2019, 47, 477-486.	1.6	48

FIONA P BRENNAN

#	Article	IF	CITATIONS
19	A robust, costâ€effective method for DNA, RNA and protein coâ€extraction from soil, other complex microbiomes and pure cultures. Molecular Ecology Resources, 2019, 19, 439-455.	2.2	43
20	riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. Nucleic Acids Research, 2018, 46, e68-e68.	6.5	10
21	The Living Soil: Biodiversity and Functions. World Soils Book Series, 2018, , 257-265.	0.1	0
22	Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation With Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	14
23	Absence of Curli in Soil-Persistent Escherichia coli Is Mediated by a C-di-GMP Signaling Defect and Suggests Evidence of Biofilm-Independent Niche Specialization. Frontiers in Microbiology, 2018, 9, 1340.	1.5	4
24	Roles for RpoS in survival of Escherichia coli during protozoan predation and in reduced moisture conditions highlight its importance in soil environments. FEMS Microbiology Letters, 2017, 364, .	0.7	8
25	Holistic Evaluation of Field-Scale Denitrifying Bioreactors as a Basis to Improve Environmental Sustainability. Journal of Environmental Quality, 2016, 45, 788-795.	1.0	18
26	The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli. Applied and Environmental Microbiology, 2016, 82, 4628-4640.	1.4	19
27	Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Applied Soil Ecology, 2015, 89, 76-84.	2.1	39
28	Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape. Journal of Agricultural Science, 2014, 152, 71-81.	0.6	29
29	The nitrification inhibitor dicyandiamide increases mineralization–immobilization turnover in slurry-amended grassland soil. Journal of Agricultural Science, 2014, 152, 137-149.	0.6	33
30	Recently identified microbial guild mediates soil N2O sink capacity. Nature Climate Change, 2014, 4, 801-805.	8.1	364
31	Clay mineral type effect on bacterial enteropathogen survival in soil. Science of the Total Environment, 2014, 468-469, 302-305.	3.9	45
32	Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent <i>Escherichia coli</i> . FEMS Microbiology Ecology, 2013, 84, 75-85.	1.3	27
33	Impact of Soil Type, Biology and Temperature on the Survival of Non-Toxigenic <i>Escherichia</i> Coli O157. Biology and Environment, 2013, 113, 1-6.	0.2	11
34	IMPACT OF SOIL TYPE, BIOLOGY AND TEMPERATURE ON THE SURVIVAL OF NON-TOXIGENIC ESCHERICHIA COLI 0157. Biology and Environment, 2013, 113B, 41-46.	0.2	14
35	Evaluating <i>E. coli</i> Transport Risk in Soil using Dye and Bromide Tracers. Soil Science Society of America Journal, 2012, 76, 663-673.	1.2	9
36	Water Content and Soil Type Effects on Accelerated Leaching after Slurry Application. Vadose Zone Journal, 2012, 11, .	1.3	15

FIONA P BRENNAN

#	Article	IF	CITATIONS
37	Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use and Management, 2011, 27, 464-469.	2.6	7
38	Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe – a review. Soil Use and Management, 2010, 26, 198-211.	2.6	45
39	Characterization of Environmentally Persistent <i>Escherichia coli</i> Isolates Leached from an Irish Soil. Applied and Environmental Microbiology, 2010, 76, 2175-2180.	1.4	61
40	Long-Term Persistence and Leaching of <i>Escherichia coli</i> in Temperate Maritime Soils. Applied and Environmental Microbiology, 2010, 76, 1449-1455.	1.4	97