James E Castle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A unified scale for the Auger parameter: Methodology and benefits. Surface and Interface Analysis, 2022, 54, 455-464.	1.8	5
2	Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	137
3	In Situ Electrochemical–AFM and Cluster-Ion-Profiled XPS Characterization of an Insulating Polymeric Membrane as a Substrate for Immobilizing Biomolecules. Langmuir, 2017, 33, 2504-2513.	3.5	7
4	Analysis of the Be KLL Auger Transition of Beryllium Nitride and Beryllium Carbide by AES. Surface Science Spectra, 2015, 22, 71-80.	1.3	4
5	The chemical state plot for beryllium compounds. Surface and Interface Analysis, 2015, 47, 994-995.	1.8	1
6	Analysis of Silicon Germanium Standards for the Quantification of SiGe Microelectronic Devices Using AES. Surface Science Spectra, 2015, 22, 32-46.	1.3	0
7	Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	49
8	Characterisation of helical structure in AFM micrographs of a trimer of the peptide sequence (ValGlyGlyValGly). Surface and Interface Analysis, 2014, 46, 679-682.	1.8	2
9	The electron spectra of beryllium and beryllium oxide: an XPS, Xâ€AES and AES study. Surface and Interface Analysis, 2014, 46, 989-992.	1.8	17
10	XPS analysis of small particles by proximal Xâ€ray generation. Surface and Interface Analysis, 2014, 46, 949-951.	1.8	1
11	Analysis of the Li KLL Auger Transition on Freshly Exposed Lithium and Lithium Surface Oxide by AES. Surface Science Spectra, 2013, 20, 113-127.	1.3	18
12	Analysis of the Be KLL Auger Transition on Beryllium and Beryllium Oxide by AES. Surface Science Spectra, 2013, 20, 97-112.	1.3	6
13	Combined effects of solvation and aggregation propensity on the final supramolecular structures adopted by hydrophobic, glycineâ€rich, elastinâ€like polypeptides. Biopolymers, 2013, 99, 292-313.	2.4	16
14	Beryllium and Beryllium Oxide by XPS. Surface Science Spectra, 2013, 20, 86-96.	1.3	18
15	Surface science aspects of supramolecular conformation in elastinâ€like polypeptides. Surface and Interface Analysis, 2012, 44, 246-257.	1.8	4
16	Corrosion behaviour of a 2219 aluminium alloy treated with a chromate conversion coating exposed to a 3.5% NaCl solution. Corrosion Science, 2011, 53, 1214-1223.	6.6	28
17	Influence of amino acid specificities on the molecular and supramolecular organization of glycineâ€rich elastinâ€like polypeptides in water. Biopolymers, 2011, 95, 702-721.	2.4	20
18	Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution. Corrosion Science, 2010, 52, 2855-2866.	6.6	121

JAMES E CASTLE

#	Article	IF	CITATIONS
19	XPS and TOF-SIMS study of the distribution of Li ions in thin films of vanadium pentoxide after electrochemical intercalation. Surface and Interface Analysis, 2008, 40, 746-750.	1.8	7
20	The distribution of lithium intercalated in V2O5 thin films studied by XPS and ToF-SIMS. Electrochimica Acta, 2008, 53, 4257-4266.	5.2	32
21	Li+ distribution into V2O5 films resulting from electrochemical intercalation reactions. Journal of the Brazilian Chemical Society, 2008, 19, 667-671.	0.6	9
22	Accounting for the size of molecules in determination of adsorption isotherms by XPS; exemplified by adsorption of chicken egg albumin on titanium. Surface and Interface Analysis, 2005, 37, 1127-1136.	1.8	11
23	Conformational Study and Hydrogen Bonds Detection on Elastin-Related Polypeptides Using X-ray Photoelectron Spectroscopy. Biomacromolecules, 2005, 6, 1299-1309.	5.4	63
24	Curve-fitting in XPS using extrinsic and intrinsic background structure. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 65-80.	1.7	87
25	A combined atomic force microscopy (AFM)/Xâ€ray photoelectron spectroscopy (XPS) study of organosilane molecules adsorbed on the aluminium alloy L157â€T6. Journal of Materials Chemistry, 1999, 9, 2935-2941.	6.7	9
26	The intrinsic asymmetry component of the "total background―in XP spectra. Journal of Electron Spectroscopy and Related Phenomena, 1998, 94, 73-87.	1.7	32
27	The intrinsic asymmetry of photoelectron peaks: dependence on chemical state and role in curve fitting Journal of Electron Spectroscopy and Related Phenomena, 1998, 95, 45-56.	1.7	35
28	Peak fitting of the chromium 2p XPS spectrum. Applied Surface Science, 1995, 90, 333-341.	6.1	99
29	The influence of chemistry on the adhesion at the interface of carbon/epoxy composites. Composites Science and Technology, 1993, 48, 97-102.	7.8	14
30	Determination of the acidity of carbon-fibre surfaces by means of X-ray photoelectron spectroscopy adsorption isotherms. Journal of Materials Chemistry, 1992, 2, 939.	6.7	20
31	X-Ray photoelectron spectroscopy investigations of acid–base interactions in adhesion. Part 1.—Estimation of polymer properties by a solvent swelling technique. Journal of Materials Chemistry, 1992, 2, 209-215.	6.7	25
32	The Use of X-Ray Photoelectron Spectroscopy in Materials Science. Advances in X-ray Analysis, 1991, 35, 869-882.	0.0	1
33	Additional in-depth information obtainable from the energy loss features of photoelectron peaks: the oxidation and reduction of an Fe/Cr alloy in oxygen at low partial pressures and ultra high vacuum.	6.6	34