
Adriana Seilicovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807850/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Non-Viral Gene Therapy Strategies for the Treatment of Glioblastoma. Current Medicinal Chemistry, 2021, 28, 7729-7748.	2.4	1
2	Potential of IDH mutations as immunotherapeutic targets in gliomas: a review and meta-analysis. Expert Opinion on Therapeutic Targets, 2021, 25, 1045-1060.	3.4	7
3	The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far?. Expert Opinion on Therapeutic Targets, 2020, 24, 1121-1133.	3.4	7
4	Humanin Promotes Tumor Progression in Experimental Triple Negative Breast Cancer. Scientific Reports, 2020, 10, 8542.	3.3	23
5	Humanin, a Mitochondrial-Derived Peptide Released by Astrocytes, Prevents Synapse Loss in Hippocampal Neurons. Frontiers in Aging Neuroscience, 2019, 11, 123.	3.4	47
6	Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Scientific Reports, 2019, 9, 19578.	3.3	19
7	Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 117-126.	3.4	32
8	JAK2/STAT5 Pathway Mediates Prolactin-Induced Apoptosis of Lactotropes. Neuroendocrinology, 2019, 108, 84-97.	2.5	17
9	Baculovirus-based gene silencing of Humanin for the treatment of pituitary tumors. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 143-151.	4.9	19
10	Abstract 1951: Role of mitochondrial peptide Humanin in the response of experimental breast cancer to chemotherapy. , 2018, , .		1
11	Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-κB activation. Journal of Cell Communication and Signaling, 2017, 11, 329-340.	3.4	18
12	Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1713-1732.	2.5	12
13	Immunotherapy for the treatment of breast cancer. Expert Opinion on Biological Therapy, 2017, 17, 797-812.	3.1	12
14	Viral gene therapy for breast cancer: progress and challenges. Expert Opinion on Biological Therapy, 2017, 17, 945-959.	3.1	44
15	Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Research and Treatment, 2017, 166, 393-405.	2.5	21
16	Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats. Endocrine, 2016, 51, 506-516.	2.3	5
17	Lack of Oestrogenic Inhibition of the Nuclear Factorâ€₽® Pathway in Somatolactotroph Tumour Cells. Journal of Neuroendocrinology, 2015, 27, 692-701.	2.6	2
18	Prolactin Induces Apoptosis of Lactotropes in Female Rodents. PLoS ONE, 2014, 9, e97383.	2.5	25

#	Article	IF	CITATIONS
19	Antiapoptotic Factor Humanin Is Expressed in Normal and Tumoral Pituitary Cells and Protects Them from TNF-α-Induced Apoptosis. PLoS ONE, 2014, 9, e111548.	2.5	28
20	Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E356-E364.	3.5	37
21	Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes. PLoS ONE, 2012, 7, e41299.	2.5	19
22	Estradiol Increases the Expression of TNF-α and TNF Receptor 1 in Lactotropes. Neuroendocrinology, 2011, 93, 106-113.	2.5	16
23	Dopamine-Induced Apoptosis of Lactotropes Is Mediated by the Short Isoform of D2 Receptor. PLoS ONE, 2011, 6, e18097.	2.5	36
24	Conadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes. Endocrine, 2011, 39, 21-27.	2.3	6
25	Cell Life and Death in the Anterior Pituitary Gland: Role of Oestrogens. Journal of Neuroendocrinology, 2010, 22, 758-764.	2.6	30
26	Estrogen Receptors and Signaling Pathways in Lactotropes and Somatotropes. Neuroendocrinology, 2010, 92, 215-223.	2.5	34
27	Estradiol Increases the Bax/Bcl-2 Ratio and Induces Apoptosis in the Anterior Pituitary Gland. Neuroendocrinology, 2009, 90, 292-300.	2.5	32
28	Apoptosis of Lactotrophs Induced by D2 Receptor Activation Is Estrogen Dependent. Neuroendocrinology, 2008, 88, 43-52.	2.5	35
29	Gene Therapy for Pituitary Tumors. Current Gene Therapy, 2005, 5, 559-572.	2.0	9
30	Tumor Necrosis Factor-Alpha-Induced Nitric Oxide Restrains the Apoptotic Response of Anterior Pituitary Cells. Neuroendocrinology, 2004, 80, 83-91.	2.5	22
31	Effects of lipopolysaccharide on neurokinin A content and release in the hypothalamic–pituitary axis. Regulatory Peptides, 2003, 111, 91-95.	1.9	11
32	Lipopolysaccharide- and Tumor Necrosis Factor-α-Induced Changes in Prolactin Secretion and Dopaminergic Activity in the Hypothalamic-Pituitary Axis. NeuroImmunoModulation, 2002, 10, 30-39.	1.8	37
33	Neurokinin A inhibits oxytocin and GABA release from the posterior pituitary by stimulating nitric oxide synthase. Brain Research Bulletin, 2000, 53, 325-330.	3.0	13
34	Role of Nitric Oxide/Cyclic GMP Pathway in the Inhibitory Effect of GABA and Dopamine on Prolactin Release. Journal of Neuroendocrinology, 1996, 8, 909-913.	2.6	37
35	Involvement of hypothalamic substance P in the effect of prolactin on dopamine release. NeuroReport, 1994, 5, 1752-1754.	1.2	9