Monaldo Mastrolilli

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3807698/publications.pdf
Version: 2024-02-01

1 Sum-of-squares hierarchy lower bounds for symmetric formulations. Mathematical Programming,
2020, 182, 369-397.
1.6
On inequalities with bounded coefficients and pitch for the min knapsack polytope. Discrete
7 An unbounded Sum-of-Squares hierarchy integrality gap for a polynomially solvable problem. $7 \quad$ Mathematical Programming, 2017, 166, 1-17.1.688 On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy. Mathematics of OperationsResearch, 2017, 42, 135-143.$0.8 \quad 12$
9. High Degree Sum of Squares Proofs, Bienstock-Zuckerberg Hierarchy and CG Cuts. Lecture Notes in
Computer Science, 2017, , 405-416.$1.0 \quad 4$
10 Semidefinite and Linear Programming Integrality Gaps for Scheduling Identical Machines. Lecture Notes in Computer Science, 2016, , 152-163.
Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations. Lecture Notes in Computer $11 \quad \begin{aligned} & \text { Sum-of-Squares Hierarchy } \\ & \text { Science, 2016, , 362-374. }\end{aligned}$
1.0 9
Sum-of-Squares Rank Upper Bounds forÂMatching Problems. Lecture Notes in Computer Science, 2016, , 1.0 0
12 403-413.1.06
13 On the Hardest Problem FormulationA Lasserre Lower Bound for the Min-Sum Single Machine Scheduling Problem. Lecture Notes in1.03
Computer Science, 2015, , 853-864.
0.5 4Bi-criteria and approximation algorithms for restricted matchings. Theoretical Computer Science,2014, 540-541, 115-132.

The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Algorithmica, 2014, 70, 326-339.

$$
\begin{aligned}
& \text { On the approximation of minimum cost homomorphism to bipartite graphs. Discrete Applied } \\
& \text { Mathematics, 2013, 161, 670-676. }
\end{aligned}
$$25 The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Lecture Notes inComputer Science, 2012, , 556-567.

Restricted Max-Min Fair Allocations with Inclusion-Free Intervals. Lecture Notes in Computer Science, 2012, , 98-108.
27 Inapproximability Results for Maximum Edge Biclique, Minimum Linear Arrangement, and Sparsest Cut.
SIAM Journal on Computing, 2011 , 40, 567-596.
$0.8 \quad 52$
On the Approximability of Single-Machine Scheduling with Precedence Constraints. Mathematics of Operations Research, 2011, 36, 653-669.

Hybridizations of Metaheuristics With Branch \& Bound Derivates. Studies in Computational
Intelligence, 2008, , 85-116.

Approximating Single Machine Scheduling with Scenarios. Lecture Notes in Computer Science, 2008, , 153-164.

Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. , 2007, , .

67

40 The Robust Traveling Salesman Problem with Interval Data. Transportation Science, 2007, 41, 366-381.
2.6

79

41 Scheduling with Precedence Constraints of Low Fractional Dimension. , 2007, , 130-144.
9

43 Hybrid rounding techniques for knapsack problems. Discrete Applied Mathematics, 2006, 154, 640-649.
0.5

11
Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained

Scheduling., 2007, , .

A linear time approximation scheme for the single machine scheduling problem with controllable processing times. Journal of Algorithms, 2006, 59, 37-52.
$0.9 \quad 2$

Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Mathematical
Modelling and Algorithms, 2006, 5, 91-110.
0.5

Approximating Precedence-Constrained Single Machine Scheduling by Coloring. Lecture Notes in Computer Science, 2006, , 15-26.
$1.0 \quad 8$
46 Computer Science, 2006, , 15-26.

47 On-line scheduling to minimize max flow time: an optimal preemptive algorithm. Operations Research
Letters, 2005,33,597-602.
$48 \quad$Maximum satisfiability: How good are tabu search and plateau moves in the worst-case?. European Journal of Operational Research, $2005,166,63-76$.
15

49 Core instances for testing: A case study. European Journal of Operational Research, 2005, 166, 51-62.
3.5

0

Approximation schemes for job shop scheduling problems with controllable processing times. European Journal of Operational Research, 2005, 167, 297-319.
3.5

47

```
APPROXIMATION ALGORITHMS FOR FLEXIBLE JOB SHOP PROBLEMS. International Journal of Foundations
0.8
13
of Computer Science, 2005, 16, 361-379.
```

Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Lecture Notes in Computer
Science, 2004, , 450-460.
1.0

27

59	An optimization methodology for intermodal terminal management. Journal of Intelligent Manufacturing, 2001, 12, 521-534.	4.4	82
60	Grouping Techniques for Scheduling Problems: Simpler and Faster. Lecture Notes in Computer Science, 2001, , 206-217.	1.0	6
61	Grouping Techniques for One Machine Scheduling Subject to Precedence Constraints. Lecture Notes in Computer Science, 2001, , 268-279.	1.0	3
62	Job Shop Scheduling Problems with Controllable Processing Times. Lecture Notes in Computer Science, 2001, , 107-122.	1.0	6
63	Effective neighbourhood functions for the flexible job shop problem. Journal of Scheduling, 2000, 3, 3-20.	1.3	398

