Monaldo Mastrolilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sum-of-squares hierarchy lower bounds for symmetric formulations. Mathematical Programming, 2020, 182, 369-397.	1.6	4
2	On inequalities with bounded coefficients and pitch for the min knapsack polytope. Discrete Optimization, 2020, , 100567.	0.6	3
3	High Degree Sum of Squares Proofs, Bienstock–Zuckerberg Hierarchy, and Chvátal–Gomory Cuts. SIAM Journal on Optimization, 2020, 30, 798-822.	1.2	Ο
4	Semidefinite and linear programming integrality gaps for scheduling identical machines. Mathematical Programming, 2018, 172, 231-248.	1.6	6
5	Sum-of-squares rank upper bounds for matching problems. Journal of Combinatorial Optimization, 2018, 36, 831-844.	0.8	0
6	On Bounded Pitch Inequalities for the Min-Knapsack Polytope. Lecture Notes in Computer Science, 2018, , 170-182.	1.0	2
7	An unbounded Sum-of-Squares hierarchy integrality gap for a polynomially solvable problem. Mathematical Programming, 2017, 166, 1-17.	1.6	8
8	On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy. Mathematics of Operations Research, 2017, 42, 135-143.	0.8	12
9	High Degree Sum of Squares Proofs, Bienstock-Zuckerberg Hierarchy and CG Cuts. Lecture Notes in Computer Science, 2017, , 405-416.	1.0	4
10	Semidefinite and Linear Programming Integrality Gaps for Scheduling Identical Machines. Lecture Notes in Computer Science, 2016, , 152-163.	1.0	1
11	Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations. Lecture Notes in Computer Science, 2016, , 362-374.	1.0	9
12	Sum-of-Squares Rank Upper Bounds forÂMatching Problems. Lecture Notes in Computer Science, 2016, , 403-413.	1.0	0
13	On the Hardest Problem Formulations for the \$\$0/1\$\$ 0 / 1 Lasserre Hierarchy. Lecture Notes in Computer Science, 2015, , 872-885.	1.0	6
14	A Lasserre Lower Bound for the Min-Sum Single Machine Scheduling Problem. Lecture Notes in Computer Science, 2015, , 853-864.	1.0	3
15	Bi-criteria and approximation algorithms for restricted matchings. Theoretical Computer Science, 2014, 540-541, 115-132.	0.5	4
16	The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Algorithmica, 2014, 70, 326-339.	1.0	0
17	Improved Approximation for the Maximum Duo-Preservation String Mapping Problem. Lecture Notes in Computer Science, 2014, , 14-25.	1.0	3
18	Single machine scheduling with scenarios. Theoretical Computer Science, 2013, 477, 57-66.	0.5	16

			CITATIONS
	On the approximation of minimum cost homomorphism to bipartite graphs. Discrete Applied Mathematics, 2013, 161, 670-676.	0.5	1
20	Vertex cover in graphs with locally few colors. Information and Computation, 2013, 222, 265-277.	0.5	4
21	How to Sell Hyperedges: The Hypermatching Assignment Problem. , 2013, , .		20
	Competitive-Ratio Approximation Schemes for Makespan Scheduling Problems. Lecture Notes in Computer Science, 2013, , 159-172.	1.0	2
23	Constrained Matching Problems in Bipartite Graphs. Lecture Notes in Computer Science, 2012, , 344-355.	1.0	4
24	Approximation of Minimum Cost Homomorphisms. Lecture Notes in Computer Science, 2012, , 587-598.	1.0	9
	The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Lecture Notes in Computer Science, 2012, , 556-567.	1.0	0
	Restricted Max-Min Fair Allocations with Inclusion-Free Intervals. Lecture Notes in Computer Science, 2012, , 98-108.	1.0	3
	Inapproximability Results for Maximum Edge Biclique, Minimum Linear Arrangement, and Sparsest Cut. SIAM Journal on Computing, 2011, 40, 567-596.	0.8	52
	On the Approximability of Single-Machine Scheduling with Precedence Constraints. Mathematics of Operations Research, 2011, 36, 653-669.	0.8	21
29	Hardness of Approximating Flow and Job Shop Scheduling Problems. Journal of the ACM, 2011, 58, 1-32.	1.8	20
30	Vertex Cover in Graphs with Locally Few Colors. Lecture Notes in Computer Science, 2011, , 498-509.	1.0	5
	Minimizing the sum of weighted completion times in a concurrent open shop. Operations Research Letters, 2010, 38, 390-395.	0.5	65
32	On the use of different types of knowledge in metaheuristics based on constructing solutions. Engineering Applications of Artificial Intelligence, 2010, 23, 650-659.	4.3	7
33	Single Machine Precedence Constrained Scheduling Is aÂVertex Cover Problem. Algorithmica, 2009, 53, 488-503.	1.0	29
34	Improved Bounds for Flow Shop Scheduling. Lecture Notes in Computer Science, 2009, , 677-688.	1.0	3
35	Grouping Techniques for Scheduling Problems: Simpler and Faster. Algorithmica, 2008, 51, 183-199.	1.0	14

36 (Acyclic) Job Shops are Hard to Approximate. , 2008, , .

Monaldo Mastrolilli

#	Article	IF	CITATIONS
37	Hybridizations of Metaheuristics With Branch & Bound Derivates. Studies in Computational Intelligence, 2008, , 85-116.	0.7	16
38	Approximating Single Machine Scheduling with Scenarios. Lecture Notes in Computer Science, 2008, , 153-164.	1.0	5
39	Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. , 2007, , .		67
40	The Robust Traveling Salesman Problem with Interval Data. Transportation Science, 2007, 41, 366-381.	2.6	79
41	Scheduling with Precedence Constraints of Low Fractional Dimension. , 2007, , 130-144.		9
42	Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. , 2007, , .		14
43	Hybrid rounding techniques for knapsack problems. Discrete Applied Mathematics, 2006, 154, 640-649.	0.5	11
44	A linear time approximation scheme for the single machine scheduling problem with controllable processing times. Journal of Algorithms, 2006, 59, 37-52.	0.9	2
45	Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Mathematical Modelling and Algorithms, 2006, 5, 91-110.	0.5	103
46	Approximating Precedence-Constrained Single Machine Scheduling by Coloring. Lecture Notes in Computer Science, 2006, , 15-26.	1.0	8
47	On-line scheduling to minimize max flow time: an optimal preemptive algorithm. Operations Research Letters, 2005, 33, 597-602.	0.5	16
48	Maximum satisfiability: How good are tabu search and plateau moves in the worst-case?. European Journal of Operational Research, 2005, 166, 63-76.	3.5	15
49	Core instances for testing: A case study. European Journal of Operational Research, 2005, 166, 51-62.	3.5	0
50	Approximation schemes for job shop scheduling problems with controllable processing times. European Journal of Operational Research, 2005, 167, 297-319.	3.5	47
51	APPROXIMATION ALGORITHMS FOR FLEXIBLE JOB SHOP PROBLEMS. International Journal of Foundations of Computer Science, 2005, 16, 361-379.	0.8	13
52	Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Lecture Notes in Computer Science, 2004, , 450-460.	1.0	27
53	SCHEDULING TO MINIMIZE MAX FLOW TIME: OFF-LINE AND ON-LINE ALGORITHMS. International Journal of Foundations of Computer Science, 2004, 15, 385-401.	0.8	8
54	Approximation schemes for parallel machine scheduling problems with controllable processing times. Computers and Operations Research, 2004, 31, 1565-1581.	2.4	31

#	Article	IF	CITATIONS
55	Efficient Approximation Schemes for Scheduling Problems with Release Dates and Delivery Times. Journal of Scheduling, 2003, 6, 521-531.	1.3	38

Notes on Max Flow Time Minimization with Controllable Processing Times. Computing (Vienna/New) Tj ETQq0 0 0 gBT /Overlock 10 Tf gBT /Overlock 10 Tf

57	On Minimizing Average Weighted Completion Time: A PTAS for the Job Shop Problem with Release Dates. Lecture Notes in Computer Science, 2003, , 319-328.	1.0	4
58	Core Instances for Testing: A Case Study. Lecture Notes in Computer Science, 2003, , 209-222.	1.0	0
59	An optimization methodology for intermodal terminal management. Journal of Intelligent Manufacturing, 2001, 12, 521-534.	4.4	82
60	Grouping Techniques for Scheduling Problems: Simpler and Faster. Lecture Notes in Computer Science, 2001, , 206-217.	1.0	6
61	Grouping Techniques for One Machine Scheduling Subject to Precedence Constraints. Lecture Notes in Computer Science, 2001, , 268-279.	1.0	3
62	Job Shop Scheduling Problems with Controllable Processing Times. Lecture Notes in Computer Science, 2001, , 107-122.	1.0	6
63	Effective neighbourhood functions for the flexible job shop problem. Journal of Scheduling, 2000, 3, 3-20.	1.3	398
64	Approximation Algorithms for Flexible Job Shop Problems. Lecture Notes in Computer Science, 2000, , 68-77.	1.0	16