Junling Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807658/publications.pdf

Version: 2024-02-01

94433 98798 4,718 80 37 67 h-index citations g-index papers 85 85 85 5540 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural polyphenol-based nanoengineering of collagen-constructed hemoperfusion adsorbent for the excretion of heavy metals. Journal of Hazardous Materials, 2022, 428, 128145.	12.4	10
2	Collagen-based materials in reproductive medicine and engineered reproductive tissues. Journal of Leather Science and Engineering, 2022, 4, .	6.0	14
3	Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy. Theranostics, 2022, 12, 2028-2040.	10.0	12
4	Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Scientific Reports, 2022, 12, 2071.	3.3	9
5	Imparting reusable and SARS-CoV-2 inhibition properties to standard masks through metal-organic nanocoatings. Journal of Hazardous Materials, 2022, 431, 128441.	12.4	16
6	Plant factory technology lights up urban horticulture in the post-coronavirus world. Horticulture Research, 2022, 9, .	6.3	6
7	Engineering microparticles based on solidified stem cell secretome with an augmented pro-angiogenic factor portfolio for therapeutic angiogenesis. Bioactive Materials, 2022, 17, 526-541.	15.6	5
8	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	11.3	11
9	Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioactive Materials, 2022, 16, 95-106.	15.6	17
10	A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nature Communications, 2022, 13, 2117.	12.8	74
11	Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	38.1	64
12	Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nature Biomedical Engineering, 2021, 5, 441-454.	22.5	57
13	Thermoresponsive Hemostatic Hydrogel with a Biomimetic Nanostructure Constructed from Aggregated Collagen Nanofibers. Biomacromolecules, 2021, 22, 319-329.	5.4	21
14	Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater. Journal of Environmental Management, 2021, 283, 112001.	7.8	23
15	Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy. Carbohydrate Polymers, 2021, 260, 117760.	10.2	13
16	A Heterostructureâ€Inâ€Built Multichambered Host Architecture Enabled by Topochemical Selfâ€Nitridation for Rechargeable Lithiated Siliconâ€Polysulfide Full Battery. Advanced Functional Materials, 2021, 31, 2103456.	14.9	15
17	Collagen peptide provides Streptomyces coelicolor CGMCC 4.7172 with abundant precursors for enhancing undecylprodigiosin production. Journal of Leather Science and Engineering, 2021, 3, .	6.0	7
18	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Science Advances, 2021, 7, eabh3482.	10.3	74

#	Article	IF	CITATIONS
19	Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials, 2021, 276, 121026.	11.4	81
20	Biofilms in plant-based fermented foods: Formation mechanisms, benefits and drawbacks on quality and safety, and functionalization strategies. Trends in Food Science and Technology, 2021, 116, 940-953.	15.1	15
21	Engineered liver-inspired collagen matrix as a high-performance hemoperfusion adsorbent for bilirubin removal. Chemical Engineering Journal, 2021, 426, 130791.	12.7	8
22	A Heterostructureâ€Inâ€Built Multichambered Host Architecture Enabled by Topochemical Selfâ€Nitridation for Rechargeable Lithiated Siliconâ€Polysulfide Full Battery (Adv. Funct. Mater. 41/2021). Advanced Functional Materials, 2021, 31, 2170306.	14.9	0
23	Collagen Peptide Provides <i>Saccharomyces cerevisiae</i> with Robust Stress Tolerance for Enhanced Bioethanol Production. ACS Applied Materials & Enhanced Bioethanol Production.	8.0	17
24	Engineering of Living Cells with Polyphenolâ€Functionalized Biologically Active Nanocomplexes. Advanced Materials, 2020, 32, e2003492.	21.0	60
25	Nanocarrierâ€Mediated Cytosolic Delivery of Biopharmaceuticals. Advanced Functional Materials, 2020, 30, 1910566.	14.9	99
26	Lightweight and Wearable Xâ€Ray Shielding Material with Biological Structure for Low Secondary Radiation and Metabolic Saving Performance. Advanced Materials Technologies, 2020, 5, 2000240.	5.8	25
27	Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials. Journal of Hazardous Materials, 2020, 398, 122943.	12.4	39
28	Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. Journal of Controlled Release, 2020, 322, 602-609.	9.9	55
29	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	21.0	64
30	Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials, 2020, 242, 119929.	11.4	46
31	Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials, 2020, 235, 119784.	11.4	45
32	Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19916-19926.	8.0	48
33	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules, 2019, 20, 3592-3600.	5.4	31
34	Expression of Programmed Cell Death-Ligands in Hepatocellular Carcinoma: Correlation With Immune Microenvironment and Survival Outcomes. Frontiers in Oncology, 2019, 9, 883.	2.8	40
35	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt–tannic acid networks. Nanoscale, 2019, 11, 1921-1928.	5.6	34
36	Unidirectional Presentation of Membrane Proteins in Nanoparticleâ€Supported Liposomes. Angewandte Chemie, 2019, 131, 9971-9975.	2.0	0

#	Article	IF	Citations
37	Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. ACS Biomaterials Science and Engineering, 2019, 5, 5578-5596.	5.2	105
38	Unidirectional Presentation of Membrane Proteins in Nanoparticleâ€Supported Liposomes. Angewandte Chemie - International Edition, 2019, 58, 9866-9870.	13.8	9
39	Self-Assembly: Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970028.	11.2	2
40	Metal-Phenolic Nanoparticles: Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer (Adv. Biosys. 2/2019). Advanced Biology, 2019, 3, 1970022.	3.0	1
41	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal–Phenolic Network Films. Biomacromolecules, 2019, 20, 1421-1428.	5.4	35
42	Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry and Engineering, 2019, 7, 6287-6294.	6.7	49
43	RÃ1⁄4cktitelbild: Unidirectional Presentation of Membrane Proteins in Nanoparticleâ€6upported Liposomes (Angew. Chem. 29/2019). Angewandte Chemie, 2019, 131, 10114-10114.	2.0	0
44	Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energy and Environmental Science, 2019, 12, 607-614.	30.8	259
45	Selfâ€Assembled Metalâ€Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. Advanced Biology, 2019, 3, e1800241.	3.0	30
46	Targeted Therapy against Metastatic Melanoma Based on Selfâ€Assembled Metalâ€Phenolic Nanocomplexes Comprised of Green Tea Catechin. Advanced Science, 2019, 6, 1801688.	11.2	109
47	Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Current Medicinal Chemistry, 2019, 26, 6107-6131.	2.4	23
48	Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chemistry, 2018, 20, 1335-1344.	9.0	64
49	Thermal Transition of Bimetallic Metal–Phenolic Networks to Biomassâ€Derived Hierarchically Porous Nanofibers. Chemistry - an Asian Journal, 2018, 13, 972-976.	3.3	16
50	Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch. Nanoscale, 2018, 10, 2034-2044.	5.6	16
51	Synthesis of Metal Nanoparticles in Metalâ€Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles. Advanced Healthcare Materials, 2018, 7, 1700934.	7.6	55
52	Light-driven fine chemical production in yeast biohybrids. Science, 2018, 362, 813-816.	12.6	251
53	Synthetic Polymers for Biomedical Applications. International Journal of Biomaterials, 2018, 2018, 1-2.	2.4	25
54	Cell-Conditioned Protein Coronas on Engineered Particles Influence Immune Responses. Biomacromolecules, 2017, 18, 431-439.	5.4	33

#	Article	IF	CITATIONS
55	Selfâ€Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700467.	7.6	71
56	Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017, 18, 2118-2127.	5.4	9
57	Influence of Ionic Strength on the Deposition of Metal–Phenolic Networks. Langmuir, 2017, 33, 10616-10622.	3.5	61
58	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, 11, 1105-1111.	31.5	337
59	Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational Forces. European Journal of Inorganic Chemistry, 2016, 2016, 4499-4504.	2.0	12
60	Polymer Capsules for Plaqueâ€Targeted In Vivo Delivery. Advanced Materials, 2016, 28, 7703-7707.	21.0	29
61	Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. Biomacromolecules, 2016, 17, 2268-2276.	5.4	89
62	Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Applied Materials & Diterfaces, 2016, 8, 3250-3257.	8.0	64
63	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7449-7455.	8.0	28
64	Nanoporous Metal–Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. Advanced Healthcare Materials, 2015, 4, 2170-2175.	7.6	57
65	Boronate–Phenolic Network Capsules with Dual Response to Acidic pH and <i>cis</i> à€Diols. Advanced Healthcare Materials, 2015, 4, 1796-1801.	7.6	60
66	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. Small, 2015, 11, 2032-2036.	10.0	216
67	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. Advanced Science, 2015, 2, 1400007.	11.2	40
68	Generalizable Strategy for Engineering Protein Particles with pH-Triggered Disassembly and Recoverable Protein Functionality. ACS Macro Letters, 2015, 4, 160-164.	4.8	13
69	The role of capsule stiffness on cellular processing. Chemical Science, 2015, 6, 3505-3514.	7.4	109
70	Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. ACS Macro Letters, 2015, 4, 1259-1263.	4.8	44
71	Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration. Langmuir, 2015, 31, 9054-9060.	3.5	30
72	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. Nanoscale, 2014, 6, 13416-13420.	5.6	17

#	Article	IF	CITATIONS
73	Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks. Angewandte Chemie - International Edition, 2014, 53, 5546-5551.	13.8	781
74	Fluidized Bed Layer-by-Layer Microcapsule Formation. Langmuir, 2014, 30, 10028-10034.	3.5	35
75	Synergistic Enhancement of Lung Cancer Therapy Through Nanocarrierâ€Mediated Sequential Delivery of Superantigen and Tyrosin Kinase Inhibitor. Advanced Functional Materials, 2014, 24, 5482-5492.	14.9	17
76	Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks. Angewandte Chemie, 2014, 126, 5652-5657.	2.0	111
77	Titelbild: Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks (Angew. Chem. 22/2014). Angewandte Chemie, 2014, 126, 5579-5579.	2.0	1
78	One-step seeding growth of controllable Ag@Ni coreâ€"shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption. Journal of Materials Chemistry, 2012, 22, 11933.	6.7	134
79	Skin Collagen Fiber-Biotemplated Synthesis of Size-Tunable Silver Nanoparticle-Embedded Hierarchical Intertextures with Lightweight and Highly Efficient Microwave Absorption Properties. Journal of Physical Chemistry C, 2012, 116, 8188-8195.	3.1	45
80	Facile Synthesis of Size-Controlled Silver Nanoparticles Using Plant Tannin Grafted Collagen Fiber As Reductant and Stabilizer for Microwave Absorption Application in the Whole Ku Band. Journal of Physical Chemistry C, 2011, 115, 23688-23694.	3.1	66