Roland Kays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807086/publications.pdf

Version: 2024-02-01

		27035	27587
181	14,560	58	110
papers	citations	h-index	g-index
189	189	189	14869
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A pilot study on the home range and movement patterns of the Andean Fox <i>Lycalopex culpaeus</i> (Molina, 1782) in Cotopaxi National Park, Ecuador. Mammalia, 2022, 86, 22-26.	0.3	2
2	A Quantitative Framework for Identifying Patterns of Route-Use in Animal Movement Data. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	4
3	A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions. Journal of Agricultural, Biological, and Environmental Statistics, 2022, 27, 321-338.	0.7	17
4	Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters, 2022, 15 , .	2.8	35
5	Populationâ€level inference for homeâ€range areas. Methods in Ecology and Evolution, 2022, 13, 1027-1041.	2.2	8
6	Which mammals can be identified from camera traps and crowdsourced photographs?. Journal of Mammalogy, 2022, 103, 767-775.	0.6	12
7	Perspectives in machine learning for wildlife conservation. Nature Communications, 2022, 13, 792.	5.8	176
8	Expert range maps of global mammal distributions harmonised to three taxonomic authorities. Journal of Biogeography, 2022, 49, 979-992.	1.4	41
9	The effect of urbanization on spatiotemporal interactions between gray foxes and coyotes. Ecosphere, 2022, 13, .	1.0	14
10	Biological Earth observation with animal sensors. Trends in Ecology and Evolution, 2022, 37, 293-298.	4.2	49
11	The Movebank system for studying global animal movement and demography. Methods in Ecology and Evolution, 2022, 13, 419-431.	2.2	58
12	Seasonal Patterns in Daily Flight Distance and Space Use by Great Egrets (Ardea alba). Waterbirds, 2022, 44, .	0.2	0
13	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	3.0	11
14	Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere. Ecological Applications, 2022, 32, e2679.	1.8	11
15	<scp>SNAPSHOT USA</scp> 2020: A second coordinated national camera trap survey of the United States during the <scp>COVID</scp> â€19 pandemic. Ecology, 2022, 103, .	1.5	11
16	What drives spatially varying ecological relationships in a wideâ€ranging species?. Diversity and Distributions, 2022, 28, 1752-1768.	1.9	6
17	MoveApps: a serverless no-code analysis platform for animal tracking data. Movement Ecology, 2022, 10, .	1.3	7
18	Can mammals thrive near urban areas in the Neotropics? Characterizing the community of a reclaimed tropical forest. Tropical Ecology, 2021, 62, 174-185.	0.6	2

#	Article	IF	CITATIONS
19	Candid Critters: Challenges and Solutions in a Large-Scale Citizen Science Camera Trap Project. Citizen Science: Theory and Practice, 2021, 6, .	0.6	17
20	Disturbance type and species life history predict mammal responses to humans. Global Change Biology, 2021, 27, 3718-3731.	4.2	62
21	Estimating encounter location distributions from animal tracking data. Methods in Ecology and Evolution, 2021, 12, 1158-1173.	2.2	21
22	SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States. Ecology, 2021, 102, e03353.	1.5	36
23	Carolina critters: a collection of cameraâ€ŧrap data from wildlife surveys across North Carolina. Ecology, 2021, 102, e03372.	1.5	4
24	Tracking the decline of weasels in North America. PLoS ONE, 2021, 16, e0254387.	1.1	8
25	Home range variation in leopards living across the human density gradient. Journal of Mammalogy, 2021, 102, 1138-1148.	0.6	15
26	Empirical evaluation of the spatial scale and detection process of camera trap surveys. Movement Ecology, 2021, 9, 41.	1.3	10
27	Arboreal monkeys facilitate foraging of terrestrial frugivores. Biotropica, 2021, 53, 1685-1697.	0.8	9
28	Evaluation of the Spatial Biases and Sample Size of a Statewide Citizen Science Project. Citizen Science: Theory and Practice, 2021, 6, 34.	0.6	5
29	Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Environmental Conservation, 2020, 47, 1-6.	0.7	84
30	Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales. Journal of Avian Biology, 2020, 51, .	0.6	1
31	An empirical evaluation of camera trap study design: How many, how long and when?. Methods in Ecology and Evolution, 2020, 11, 700-713.	2.2	115
32	Coyotes living near cities are bolder: implications for dog evolution and human-wildlife conflict. Behaviour, 2020, 157, 289-313.	0.4	16
33	Does Use of Backyard Resources Explain the Abundance of Urban Wildlife?. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	31
34	Animal species classification using deep neural networks with noise labels. Ecological Informatics, 2020, 57, 101063.	2.3	8
35	Ecological insights from three decades of animal movement tracking across a changing Arctic. Science, 2020, 370, 712-715.	6.0	75
36	A Novel Framework to Protect Animal Data in a World of Ecosurveillance. BioScience, 2020, 70, 468-476.	2.2	22

#	Article	IF	CITATIONS
37	Effects of body size on estimation of mammalian area requirements. Conservation Biology, 2020, 34, 1017-1028.	2.4	51
38	COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology and Evolution, 2020, 4, 1156-1159.	3.4	413
39	Foraging movements are density-independent among straw-coloured fruit bats. Royal Society Open Science, 2020, 7, 200274.	1.1	10
40	The small home ranges and large local ecological impacts of pet cats. Animal Conservation, 2020, 23, 516-523.	1.5	52
41	Bornâ€digital biodiversity data: Millions and billions. Diversity and Distributions, 2020, 26, 644-648.	1.9	68
42	Precipitous decline of white-lipped peccary populations in Mesoamerica. Biological Conservation, 2020, 242, 108410.	1.9	16
43	High variability within pet foods prevents the identification of native species in pet cats' diets using isotopic evaluation. PeerJ, 2020, 8, e8337.	0.9	5
44	Wildlife response to recreational trail building: An experimental method and Appalachian case study. Journal for Nature Conservation, 2020, 56, 125815.	0.8	8
45	Whiteâ€tailed deer and coyote colonization: a response to Kilgo et al. (2019). Journal of Wildlife Management, 2019, 83, 1641-1643.	0.7	2
46	Large birds travel farther in homogeneous environments. Global Ecology and Biogeography, 2019, 28, 576-587.	2.7	39
47	Semantic region of interest and species classification in the deep neural network feature domain. Ecological Informatics, 2019, 52, 57-68.	2.3	6
48	Urbanization focuses carnivore activity in remaining natural habitats, increasing species interactions. Journal of Applied Ecology, 2019, 56, 1894-1904.	1.9	61
49	Effects on whiteâ€tailed deer following eastern coyote colonization. Journal of Wildlife Management, 2019, 83, 916-924.	0.7	14
50	Animal Scanner: Software for classifying humans, animals, and empty frames in camera trap images. Ecology and Evolution, 2019, 9, 1578-1589.	0.8	52
51	Local host-tick coextinction in neotropical forest fragments. International Journal for Parasitology, 2019, 49, 225-233.	1.3	20
52	The ocean's movescape: fisheries management in the bio-logging decade (2018–2028). ICES Journal of Marine Science, 2019, 76, 477-488.	1.2	58
53	Canid collisionâ€"expanding populations of coyotes (Canis latrans) and crab-eating foxes (Cerdocyon) Tj ETQq1	1 0.78431 0.6	.4 rgBT /Ove
54	Scale-insensitive estimation of speed and distance traveled from animal tracking data. Movement Ecology, 2019, 7, 35.	1.3	58

#	Article	IF	CITATIONS
55	Citizen Science in Schools: Students Collect Valuable Mammal Data for Science, Conservation, and Community Engagement. BioScience, 2019, 69, 69-79.	2.2	42
56	Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing, 2019, 40, 407-419.	1.3	82
57	Children's attitudes towards animals are similar across suburban, exurban, and rural areas. PeerJ, 2019, 7, e7328.	0.9	17
58	Revised distributional estimates for the recently discovered olinguito (Bassaricyon neblina), with comments on natural and taxonomic history. Journal of Mammalogy, 2018, 99, 321-332.	0.6	25
59	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
60	Free-ranging domestic cats (Felis catus) on public lands: estimating density, activity, and diet in the Florida Keys. Biological Invasions, 2018, 20, 333-344.	1.2	60
61	High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (<i>Canis latrans</i>) populations. Ecology and Evolution, 2018, 8, 12641-12655.	0.8	21
62	Population Genomic Analysis of North American Eastern Wolves (Canis lycaon) Supports Their Conservation Priority Status. Genes, 2018, 9, 606.	1.0	32
63	Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys, 2018, 759, 81-97.	0.5	145
64	Object detection from dynamic scene using joint background modeling and fast deep learning classification. Journal of Visual Communication and Image Representation, 2018, 55, 802-815.	1.7	7
65	Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 334-357.	0.7	5
66	Is the Red Wolf a Listable Unit Under the US Endangered Species Act?. Journal of Heredity, 2018, 109, 585-597.	1.0	44
67	Mammal communities are larger and more diverse in moderately developed areas. ELife, 2018, 7, .	2.8	52
68	The value of citizen science for ecological monitoring of mammals. PeerJ, 2018, 6, e4536.	0.9	33
69	Stink or swim: techniques to meet the challenges for the study and conservation of small critters that hide, swim, or climb, and may otherwise make themselves unpleasant., $2018,$		0
70	Does hunting or hiking affect wildlife communities in protected areas?. Journal of Applied Ecology, 2017, 54, 242-252.	1.9	92
71	Involving Citizen Scientists in Biodiversity Observation. , 2017, , 211-237.		32
72	Coupling visitor and wildlife monitoring in protected areas using camera traps. Journal of Outdoor Recreation and Tourism, 2017, 17, 44-53.	1.3	29

#	Article	IF	Citations
73	Scalingâ€up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 2017, 15, 26-34.	1.9	287
74	Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. , 2017, , .		40
75	Defense of an expanded historical range for the Mexican wolf: A comment on Heffelfinger et al Journal of Wildlife Management, 2017, 81, 1331-1333.	0.7	7
76	Creating advocates for mammal conservation through citizen science. Biological Conservation, 2017, 208, 98-105.	1.9	65
77	Deer on the lookout: how hunting, hiking and coyotes affect whiteâ€tailed deer vigilance. Journal of Zoology, 2017, 301, 320-327.	0.8	33
78	Do occupancy or detection rates from camera traps reflect deer density?. Journal of Mammalogy, 2017, 98, 1547-1557.	0.6	56
79	Object segmentation in the deep neural network feature domain from highly cluttered natural scenes. , 2017, , .		3
80	Track Annotation: Determining the Environmental Context of Movement Through the Air., 2017,, 71-86.		2
81	Managed forest as habitat for gray brocket deer (Mazama gouazoubira) in agricultural landscapes of southeastern Brazil. Journal of Mammalogy, 2017, , .	0.6	3
82	What's in Your School Yard? Using Citizen Science Wildlife Cameras to Conduct Authentic Scientific Investigations. Science Scope (Washington, D C), 2017, 041, .	0.1	3
83	Admixture mapping identifies introgressed genomic regions in North American canids. Molecular Ecology, 2016, 25, 2443-2453.	2.0	79
84	Long-distance dispersal of a subadult male cougar from South Dakota to Connecticut documented with DNA evidence. Journal of Mammalogy, 2016, 97, 1435-1440.	0.6	30
85	Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sensing in Ecology and Conservation, 2016, 2, 84-94.	2.2	79
86	The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biological Conservation, 2016, 203, 75-88.	1.9	93
87	A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 2016, 7, 1164-1173.	2.2	150
88	Visual Informatics Tools for Supporting Large-Scale Collaborative Wildlife Monitoring with Citizen Scientists. IEEE Circuits and Systems Magazine, 2016, 16, 73-86.	2.6	45
89	A twoâ€species occupancy model accommodating simultaneous spatial and interspecific dependence. Ecology, 2016, 97, 48-53.	1.5	30
90	Volunteer-run cameras as distributed sensors for macrosystem mammal research. Landscape Ecology, 2016, 31, 55-66.	1.9	115

#	Article	IF	CITATIONS
91	Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?. PLoS ONE, 2016, 11, e0146055.	1.1	60
92	An Open Standard for Camera Trap Data. Biodiversity Data Journal, 2016, 4, e10197.	0.4	41
93	Terrestrial animal tracking as an eye on life and planet. Science, 2015, 348, aaa2478.	6.0	1,067
94	Cats are rare where coyotes roam. Journal of Mammalogy, 2015, 96, 981-987.	0.6	50
95	Prescribed fire affects female white-tailed deer habitat use during summer lactation. Forest Ecology and Management, 2015, 348, 220-225.	1.4	42
96	Carnivore coexistence: America's recovery. Science, 2015, 347, 382-383.	6.0	39
97	Emerging Technologies to Conserve Biodiversity. Trends in Ecology and Evolution, 2015, 30, 685-696.	4.2	240
98	Identification of Novel Gammaherpesviruses in Ocelots (<i>Leopardus pardalis</i>) and Bobcats (<i>Lynx rufus</i>) in Panama and Colorado, USA. Journal of Wildlife Diseases, 2015, 51, 911-915.	0.3	11
99	Mesopredator release facilitates range expansion in fisher. Animal Conservation, 2015, 18, 50-61.	1.5	29
100	How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ, 2014, 2, e374.	0.9	58
101	Deep convolutional neural network based species recognition for wild animal monitoring. , 2014, , .		95
102	Patterns of Mortality in a Wild Population of White-Footed Mice. Northeastern Naturalist, 2014, 21, 323-336.	0.1	11
103	Prey refuges as predator hotspots: ocelot (Leopardus pardalis) attraction to agouti (Dasyprocta) Tj ETQq1 1 0.784	4314 rgBT 1.1	/Overlock 1
104	Mammals in and around suburban yards, and the attraction of chicken coops. Urban Ecosystems, 2014, 17, 691-705.	1.1	28
105	Selection and spatial arrangement of rest sites within northern tamandua home ranges. Journal of Zoology, 2014, 293, 160-170.	0.8	7
106	Recommended guiding principles for reporting on camera trapping research. Biodiversity and Conservation, 2014, 23, 2321-2343.	1.2	222
107	Environmental drivers of variability in the movement ecology of turkey vultures (<i>Cathartes) Tj ETQq1 1 0.7843 Sciences, 2014, 369, 20130195.</i>	314 rgBT /0 1.8	Overlock 10 122
108	Food acquisition and predator avoidance in a Neotropical rodent. Animal Behaviour, 2014, 88, 41-48.	0.8	41

#	Article	IF	CITATIONS
109	Assessment of coyote–wolf–dog admixture using ancestryâ€informative diagnostic <scp>SNP</scp> s. Molecular Ecology, 2014, 23, 182-197.	2.0	81
110	Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 2014, 5, 1170-1179.	2.2	317
111	Effects of Food Availability on Space and Refuge Use by a Neotropical Scatterhoarding Rodent. Biotropica, 2013, 45, 88-93.	0.8	21
112	The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Movement Ecology, $2013, 1, 3$.	1.3	250
113	Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Movement Ecology, 2013, 1, 4.	1.3	111
114	Animal behavior, cost-based corridor models, and real corridors. Landscape Ecology, 2013, 28, 1615-1630.	1.9	154
115	Automated identification of animal species in camera trap images. Eurasip Journal on Image and Video Processing, 2013, 2013, .	1.7	139
116	Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry, 2013, 1, 20.	0.8	386
117	Clarifying assumptions behind the estimation of animal density from camera trap rates. Journal of Wildlife Management, 2013, 77, 876-876.	0.7	52
118	Evidence for cache surveillance by a scatter-hoarding rodent. Animal Behaviour, 2013, 85, 1511-1516.	0.8	29
119	Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys, 2013, 324, 1-83.	0.5	97
120	Why Do Sloths Poop on the Ground?., 2013, , 195-199.		2
121	Attraction and avoidance detection from movements. Proceedings of the VLDB Endowment, 2013, 7, 157-168.	2.1	13
122	Accelerometerâ€informed GPS telemetry: Reducing the tradeâ€off between resolution and longevity. Wildlife Society Bulletin, 2012, 36, 139-146.	1.6	92
123	Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12610-12615.	3.3	249
124	Directed seed dispersal towards areas with low conspecific tree density by a scatterâ€hoarding rodent. Ecology Letters, 2012, 15, 1423-1429.	3.0	116
125	Moderating <scp>A</scp> rgos location errors in animal tracking data. Methods in Ecology and Evolution, 2012, 3, 999-1007.	2.2	246
126	A telemetric thread tag for tracking seed dispersal by scatter-hoarding rodents. Plant Ecology, 2012, 213, 933-943.	0.7	42

#	Article	IF	CITATIONS
127	A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology, 2012, 81, 738-746.	1.3	342
128	Quantifying seed dispersal kernels from truncated seedâ€tracking data. Methods in Ecology and Evolution, 2012, 3, 595-602.	2.2	25
129	Bias in estimating animal travel distance: the effect of sampling frequency. Methods in Ecology and Evolution, 2012, 3, 653-662.	2.2	110
130	Mining periodic behaviors of object movements for animal and biological sustainability studies. Data Mining and Knowledge Discovery, 2012, 24, 355-386.	2.4	52
131	A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research, 2011, 21, 1294-1305.	2.4	266
132	Using Stable Carbon Isotopes to Distinguish Wild from Captive Wolves. Northeastern Naturalist, 2011, 18, 253-264.	0.1	24
133	Emergence Time and Foraging Activity in Pallas' Mastiff Bat, <i>Molossus molossus </i> (Chiroptera:) Tj ETQq1 399-404.	1 0.784314 rş 0.2	gBT /Overloc 23
134	The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers. Acta Oecologica, 2011, 37, 625-631.	0.5	49
135	Quantifying the sensitivity of camera traps: an adapted distance sampling approach. Methods in Ecology and Evolution, 2011, 2, 464-476.	2.2	185
136	Causes of mortality in North American populations of large and medium-sized mammals. Animal Conservation, 2011, 14, 474-483.	1.5	64
137	Technology on the Move: Recent and Forthcoming Innovations for Tracking Migratory Birds. BioScience, 2011, 61, 689-698.	2.2	395
138	The Movebank data model for animal tracking. Environmental Modelling and Software, 2011, 26, 834-835.	1.9	170
139	MoveMine. ACM Transactions on Intelligent Systems and Technology, 2011, 2, 1-32.	2.9	88
140	Tracking Animal Location and Activity with an Automated Radio Telemetry System in a Tropical Rainforest. Computer Journal, 2011, 54, 1931-1948.	1.5	130
141	Does watching a monkey change its behaviour? Quantifying observer effects in habituated wild primates using automated radiotelemetry. Animal Behaviour, 2010, 80, 475-480.	0.8	121
142	Reply to Wheeldon <i>et al.</i> â€~Colonization history and ancestry of northeastern coyotes'. Biology Letters, 2010, 6, 248-249.	1.0	11
143	Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biology Letters, 2010, 6, 89-93.	1.0	125
144	MoveMine. , 2010, , .		63

#	Article	IF	Citations
145	Mining periodic behaviors for moving objects. , 2010, , .		225
146	Swarm. Proceedings of the VLDB Endowment, 2010, 3, 723-734.	2.1	242
147	Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry. PLoS ONE, 2010, 5, e10738.	1.1	123
148	Nocturnal activity by the primarily diurnal Central American agouti (<i>Dasyprocta punctata</i>) in relation to environmental conditions, resource abundance and predation risk. Journal of Tropical Ecology, 2009, 25, 211-215.	0.5	31
149	Scatter hoarding by the Central American agouti: a test of optimal cache spacing theory. Animal Behaviour, 2009, 78, 1327-1333.	0.8	73
150	Camera traps as sensor networks for monitoring animal communities. , 2009, , .		50
151	Evidence for Three-Toed Sloth (<i>Bradypus variegatus</i>) Predation by Spectacled Owl (<i>Pulsatrix) Tj ETQq1</i>	1 8.7843	14 rgBT /Ove
152	Mammals of North America. , 2009, , .		37
153	Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters, 2008, 4, 402-405.	1.0	113
154	Home-range use by the Central American agouti (<i>Dasyprocta punctata</i>) on Barro Colorado Island, Panama. Journal of Tropical Ecology, 2008, 24, 367-374.	0.5	44
155	LANDSCAPE ECOLOGY OF EASTERN COYOTES BASED ON LARGEâ€SCALE ESTIMATES OF ABUNDANCE. Ecological Applications, 2008, 18, 1014-1027.	1.8	7 5
156	Interaction location outweighs the competitive advantage of numerical superiority in <i>Cebus capucinus</i> intergroup contests. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 577-581.	3.3	174
157	Ocelots on Barro Colorado Island Are Infected with Feline Immunodeficiency Virus but Not Other Common Feline and Canine Viruses. Journal of Wildlife Diseases, 2008, 44, 760-765.	0.3	10
158	Predispersal home range shift of an ocelot Leopardus pardalis (Carnivora: Felidae) on Barro Colorado Island, Panama. Revista De Biologia Tropical, 2008, 56, 779-87.	0.1	2
159	Variability in assays used for detection of lentiviral infection in bobcats (Lynx rufus), pumas (Puma) Tj ETQq $1\ 1\ 0$.784314 r	gBŢ.JOverloc
160	Going wild: what a global small-animal tracking system could do for experimental biologists. Journal of Experimental Biology, 2007, 210, 181-186.	0.8	257
161	Using Patterns in Track-Plate Footprints to Identify Individual Fishers. Journal of Wildlife Management, 2007, 71, 955-963.	0.7	13
162	A Comparison of Noninvasive Techniques to Survey Carnivore Communities in Northeastern North America. Wildlife Society Bulletin, 2006, 34, 1142-1151.	1.6	246

#	Article	IF	Citations
163	COMPETITIVE RELEASE IN DIETS OF OCELOT (LEOPARDUS PARDALIS) AND PUMA (PUMA CONCOLOR) AFTER JAGUAR (PANTHERA ONCA) DECLINE. Journal of Mammalogy, 2006, 87, 808-816.	0.6	165
164	Ocelot (Leopardus pardalis) Predation on Agouti (Dasyprocta punctata) 1. Biotropica, 2006, 38, 691-694.	0.8	28
165	DEVELOPMENTAL EFFECTS OF CLIMATE ON THE LION'S MANE (PANTHERA LEO). Journal of Mammalogy, 2006, 87, 193-200.	0.6	18
166	Molecular genetic variation across the southern and eastern geographic ranges of the African lion, Panthera leo. Conservation Genetics, 2005, 6, 15-24.	0.8	48
167	Ecological impact of inside/outside house cats around a suburban nature preserve. Animal Conservation, 2004, 7, 273-283.	1.5	173
168	Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biological Conservation, 2004, 119, 507-516.	1.9	229
169	Response to Revilla, and Buckley and Ruxton: the resource dispersion hypothesis. Trends in Ecology and Evolution, 2003, 18, 381-382.	4.2	37
170	A Survey of the Parasites of Coyotes (Canis latrans) in New York based on Fecal Analysis. Journal of Wildlife Diseases, 2003, 39, 712-717.	0.3	31
171	Social polyandry and promiscuous mating in a primate-like carnivore: the kinkajou (<i>Potos) Tj ETQq1 1 0.7843</i>	14 rgBT /C	Overlock 10 T
172	Mane variation in African lions and its social correlates. Canadian Journal of Zoology, 2002, 80, 471-478.	0.4	34
173	Does the resource dispersion hypothesis explain group living?. Trends in Ecology and Evolution, 2002, 17, 563-570.	4.2	252
174	The social organization of the kinkajou Potos flavus (Procyonidae). Journal of Zoology, 2001, 253, 491-504.	0.8	85
175	Arboreal tropical forest vertebrates: current knowledge and research trends. Plant Ecology, 2001, 153, 109-120.	0.7	39
176	Arboreal tropical forest vertebrates: current knowledge and research trends. Forestry Sciences, 2001, , 109-120.	0.4	64
177	Microsatellite analysis of kinkajou social organization. Molecular Ecology, 2000, 9, 743-751.	2.0	60
178	Food Preferences of Kinkajous (Potos flaws): A Frugivorous Carnivore. Journal of Mammalogy, 1999, 80, 589-599.	0.6	65
179	Home Range Size and Social Behavior of Kinkajous (Potos flavus) in the Republic of Panama. Biotropica, 1995, 27, 530.	0.8	44
180	Mobilizing Animal Movement Data: API use and the Movebank platform. Biodiversity Information Science and Standards, 0, 5, .	0.0	2

#	Article	IF	CITATIONS
181	Life in 2.5D: Animal Movement in the Trees. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3