
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3806848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	10.0	933
2	Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings, 2002, 34, 637-646.	6.7	373
3	Progress in thermal comfort research over the last twenty years. Indoor Air, 2013, 23, 442-461.	4.3	363
4	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	6.9	279
5	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	12.6	192
6	Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office. Building and Environment, 2010, 45, 45-50.	6.9	164
7	Effect of humidity on human comfort and productivity after step changes from warm and humid environment. Building and Environment, 2007, 42, 4034-4042.	6.9	133
8	Comfort limits for asymmetric thermal radiation. Energy and Buildings, 1985, 8, 225-236.	6.7	132
9	Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy and Buildings, 2002, 34, 615-621.	6.7	109
10	Workplace productivity and individual thermal satisfaction. Building and Environment, 2015, 91, 42-50.	6.9	92
11	Thermal sensation and comfort with different task conditioning systems. Building and Environment, 2007, 42, 3955-3964.	6.9	82
12	Relationship between possession of electric appliances and electricity for lighting and others in Japanese households. Energy and Buildings, 2005, 37, 259-272.	6.7	73
13	Development of JOS-2 human thermoregulation model with detailed vascular system. Building and Environment, 2013, 66, 1-10.	6.9	67
14	Effect of humidity and small air movement on thermal comfort under a radiant cooling ceiling by subjective experiments. Energy and Buildings, 1999, 30, 185-193.	6.7	66
15	Thermal comfort and productivity in offices under mandatory electricity savings after the Great East Japan earthquake. Architectural Science Review, 2013, 56, 4-13.	2.2	65
16	Productivity and fatigue. Indoor Air, 2004, 14, 126-133.	4.3	63
17	Indoor Temperature, Productivity, and Fatigue in Office Tasks. HVAC and R Research, 2007, 13, 623-633.	0.6	62
18	A review of the surface heat transfer coefficients of radiant heating and cooling systems. Building and Environment, 2019, 159, 106156.	6.9	58

#	Article	IF	CITATIONS
19	Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents. Indoor Air, 2018, 28, 146-163.	4.3	48
20	Testing and optimizing the performance of a floor-based task conditioning system. Energy and Buildings, 1995, 22, 173-186.	6.7	47
21	Versatile Modeling Platform for Cooperative Energy Management Systems in Smart Cities. Proceedings of the IEEE, 2018, 106, 594-612.	21.3	47
22	Thermoregulation model JOS-3 with new open source code. Energy and Buildings, 2021, 231, 110575.	6.7	46
23	Distributed Energy Management for Comprehensive Utilization of Residential Photovoltaic Outputs. IEEE Transactions on Smart Grid, 2018, 9, 1216-1227.	9.0	44
24	A Cooling Vest for Working Comfortably in a Moderately Hot Environment Journal of Physiological Anthropology and Applied Human Science, 2002, 21, 75-82.	0.4	43
25	Effective radiation area of human body calculated by a numerical simulation. Energy and Buildings, 2000, 32, 205-215.	6.7	39
26	Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction. Atmospheric Environment, 2007, 41, 3139-3150.	4.1	35
27	Formation of organic indoor air pollutants by UV-curing chemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 1-9.	3.9	32
28	MEASUREMENT OF CONVECTIVE AND RADIATIVE HEAT TRANSFER COEFFICIENTS OF STANDING AND SITTING HUMAN BODY BY USING A THERMAL MANIKIN. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 1997, 62, 45-51.	0.3	31
29	Chemical Emission Rates from Building Materials Measured by a Small Chamber. Journal of Asian Architecture and Building Engineering, 2002, 1, 93-100.	2.0	28
30	Emerging developments in the standardized chemical characterization of indoor air quality. Environment International, 2017, 98, 233-237.	10.0	24
31	Cerebral blood flow, fatigue, mental effort, and task performance in offices with two different pollution loads. Building and Environment, 2014, 71, 153-164.	6.9	22
32	The effect of indoor thermal environment on productivity by a year-long survey of a call centre. Intelligent Buildings International, 2009, 1, 184-194.	2.3	19
33	A FIELD MEASUREMENT OF THERMAL ENVIRONMENT IN COOL BIZ OFFICE AND THE EVALUATION ON PRODUCTIVITY BY A QUESTIONNAIRE SURVEY. Journal of Environmental Engineering (Japan), 2009, 74, 389-396.	0.4	19
34	Thermal Adaptation and Comfort Zones in Urban Semi-Outdoor Environments. Frontiers in Built Environment, 2020, 6, .	2.3	19
35	DEVELOPMENT OF 65-NODE THERMOREGULATION-MODEL FOR EVALUATION OF THERMAL ENVIRONMENT. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2001, 66, 9-16.	0.3	18
36	Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas. Building and Environment, 2009, 44, 546-557.	6.9	17

#	Article	IF	CITATIONS
37	Workers' awareness and indoor environmental quality in electricity-saving offices. Building and Environment, 2015, 88, 10-19.	6.9	17
38	Measures against COVIDâ€19 concerning Summer Indoor Environment in Japan. Japan Architectural Review, 2020, 3, 423-434.	1.1	16
39	Indirect calorimetry of metabolic rate in college-age Japanese subjects during various office activities. Building and Environment, 2021, 199, 107909.	6.9	16
40	Evaluation and Measurement of Thermal Comfort in the Vehicles with a New Thermal Manikin. , 0, , .		15
41	Effect of Car Cabin Environment on Driver's Comfort and Fatigue. , 2007, , .		15
42	THE CRITERIA OF OUTDOOR CONDITIONS FOR OPERATING NATURAL VENTILATION OPENINGS. Journal of Environmental Engineering (Japan), 2016, 81, 375-384.	0.4	14
43	MEASUREMENT OF COUGH DROPLET DEPOSITION USING THE COUGH MACHINE. Journal of Environmental Engineering (Japan), 2018, 83, 57-64.	0.4	12
44	SUBJECTIVE EXPERIMENTS ON PRODUCTIVITY UNDER MODERATELY HOT ENVIRONMENT. Journal of Environmental Engineering (Japan), 2003, 68, 33-39.	0.4	12
45	SUBJECTIVE EXPERIMENT FOR THE EFFECT OF THERMAL ENVIRONMENT AND VENTILATION RATE ON PRODUCTIVITY. Journal of Environmental Engineering (Japan), 2009, 74, 507-515.	0.4	11
46	Renovating a house to aim for net-zero energy, thermal comfort, energy self-consumption and behavioural adaptation: A method proposed for ENEMANE HOUSE 2017. Energy and Buildings, 2019, 201, 183-193.	6.7	11
47	Measurement of Face-touching Frequency in a Simulated Train. E3S Web of Conferences, 2019, 111, 02027.	0.5	11
48	Measurement of local evaporative resistance of a typical clothing ensemble using a sweating thermal manikin. Japan Architectural Review, 2020, 3, 113-120.	1.1	11
49	Differences in temperature measurement by commercial room temperature sensors: Effects of room cooling system, loads, sensor type and position. Energy and Buildings, 2021, 231, 110630.	6.7	11
50	INVESTIGATION ON MANAGEMENT OF NATURAL VENTILATION SYSTEM. Journal of Environmental Engineering (Japan), 2007, 72, 9-16.	0.4	11
51	Operation planning method for home air-conditioners considering characteristics of installation environment. Energy and Buildings, 2018, 177, 351-362.	6.7	10
52	Operation of airâ€conditioning and sanitary equipment for SARSâ€CoVâ€2 infectious disease control. Japan Architectural Review, 2021, 4, 608-620.	1.1	10
53	Effects of Spectral Properties of Glass on Thermal Comfort of Car Occupants. , 2003, , .		9
54	FIELD MEASURMENT OF SVOC IN INDOOR AIR AND HOUSE DUST IN RESIDENTIAL BUILDINGS. Journal of Environmental Engineering (Japan), 2016, 81, 199-207.	0.4	9

#	Article	IF	CITATIONS
55	EFFECT OF THERMAL ENVIRONMENT ON SLEEP QUALITY IN ACTUAL BEDROOM IN SUMMER BY SLEEP STAGES ANALYSIS. Journal of Environmental Engineering (Japan), 2018, 83, 277-284.	0.4	9
56	Investigation of transient and heterogeneous micro-climate around a human body in an enclosed personalized work environment. Energy and Built Environment, 2020, 1, 423-431.	5.9	9
57	Personalized Energy Management Systems for Home Appliances Based on Bayesian Networks. Journal of International Council on Electrical Engineering, 2015, 5, 64-69.	0.4	8
58	THE EFFECT OF MODERATELY HOT ENVIRONMENT ON PERFORMANCE AND FATIGUE EVALUATED BY SUBJECTIVE EXPERIMENT OF LONG TIME EXPOSURE. Journal of Environmental Engineering (Japan), 2009, 74, 525-530.	0.4	7
59	RELATIONSHIP AMONG SATISFACTION WITH RESIDENTIAL ENVIRONMENT, STRESS AND SUBJECTIVE HEALTH OF OCCUPANTS. Journal of Environmental Engineering (Japan), 2013, 78, 359-366.	0.4	7
60	A BASIC STUDY ON THE PREDICTION OF THE CONCENTRATION OF FORMALDEHYDE USING SMALL CHAMBERS. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2001, 66, 57-63.	0.3	7
61	EMPIRICAL STUDY ON EFFECTIVE UTILIZATION OF PHOTOVOLTAIC POWER GENERATION BY PRECOOLING AND PREHEATING OPERATION IN HOUSE. Journal of Environmental Engineering (Japan), 2019, 84, 73-81.	0.4	7
62	Numerical Comfort Simulator for Thermal Environment (Part 2) An Application of Simulator for the Evaluation of Solar Reduction Glass in a Vehicle Model. , 0, , .		6
63	THE BEHAVIORAL CHARACTERISTIC OF OFFICE WORKERS USE OF NATURAL VENTILATION WINDOW. Journal of Environmental Engineering (Japan), 2009, 74, 1075-1082.	0.4	6
64	MEASUREMENT OF DEHP CONCENTRATION IN HOUSE DUST IN JAPAN AND KOREA. Journal of Environmental Engineering (Japan), 2010, 75, 713-720.	0.4	6
65	COVARIANCE STRUCTURAL ANALYSIS AMONG LIVING ENVIRONMENT, HOUSEWORK AND CHRONIC PAIN. Journal of Environmental Engineering (Japan), 2013, 78, 55-61.	0.4	6
66	MESUREMENT OF SVOC CONCENTRATIONS IN DUST OF FOUR CHILD WELFARE FACILITIES. Journal of Environmental Engineering (Japan), 2014, 79, 429-434.	0.4	6
67	PROSPECTS OF THERMAL COMFORT IN SEMI-OUTDOOR ENVIRONMENT. Journal of Environmental Engineering (Japan), 2014, 79, 597-606.	0.4	6
68	PHYSIOLOGICAL AND PSYCHOLOGICAL AMOUNT OF PEOPLE SENSITIVE TO COLD AND THOSE NOT SO SENSITIVE IN HOUSING DURING WINTER. Journal of Environmental Engineering (Japan), 2015, 80, 211-219.	0.4	6
69	Concentration of Formaldehyde, Acetaldehyde, and Five Volatile Organic Compounds in Indoor Air: The Clean-Healthy House Construction Standard (South Korea). Journal of Asian Architecture and Building Engineering, 2017, 16, 633-639.	2.0	6
70	EVALUATION OF WORKPLACE ENVIRONMENT, WORKER SATISFACTION AND PRODUCTIVITY WHEN WORKING FROM HOME FOR COVID-19 CONTROL. Journal of Environmental Engineering (Japan), 2021, 86, 441-450.	0.4	6
71	Measurements of Chemical Emission Rates from Portable PC and Electronic Appliances. Journal of Asian Architecture and Building Engineering, 2003, 2, b55-b59.	2.0	5
72	FUNDAMENTAL EVALUATION OF THE PERFORMANCE FIELD EXPERIMENT AND MODEL EXPERIMENT OF AIR-CONDITIONING SYSTEM WITH FLOOR THERMAL STORAGE. Journal of Environmental Engineering (Japan), 2009, 74, 63-70.	0.4	5

#	Article	IF	CITATIONS
73	Influence of sorption area ratio and test method on formaldehyde reduction performance for sorptive building materials. Construction and Building Materials, 2014, 70, 175-182.	7.2	5
74	A Field Survey on Indoor Air Pollution in School Classrooms with Different Ventilation Methods. E3S Web of Conferences, 2019, 111, 01020.	0.5	5
75	THERMAL COMFORT OF TASK AIR CONDITIONING WITH ISOTHERMAL AIR FLOW UNIT. Journal of Environmental Engineering (Japan), 2004, 69, 75-82.	0.4	5
76	MEASUREMENTS OF ALDEHYDES AND VOCS FROM WALL COVERING MATERIALS BY USING A SMALL CHAMBER. Journal of Environmental Engineering (Japan), 2003, 68, 45-51.	0.4	5
77	ENVIRONMENT SATISFACTION AND WORK EFFICIENCY OF WORKPLACE WITH ACTIVITY-BASED WORKING. Journal of Environmental Engineering (Japan), 2019, 84, 975-981.	0.4	5
78	RELATIONSHIP BETWEEN HUMAN HEAT LOAD AND SLEEP QUALITY. Journal of Environmental Engineering (Japan), 2019, 84, 919-926.	0.4	5
79	Hygro-thermo-chemical transfer analysis of clothing microclimate using three-dimensional digital clothing model and computer-simulated person. Indoor and Built Environment, 2022, 31, 1493-1510.	2.8	5
80	Estimation of thermal sensation using PMV and SET under high air movement conditions. Journal of Thermal Biology, 1993, 18, 551-554.	2.5	4
81	Numerical Comfort Simulator for Thermal Environment (Part 1) A Comprehensive Combined Analysis Method with Multi-Node Thermoregulation Model, Radiation Model and CFD for Evaluation of Thermal Comfort. , 2002, , .		4
82	THE PERFORMANCE TEST OF A SMALL CHAMBER FOR THE MEASUREMENT OF ALDEHYDES AND VOCs EMISSION RATES FROM BUILDING MATERIALS AND THE COMPARISON OF FORMALDEHYDE EMISSIONS BETWEEN TWO DIFFERENT CHAMBERS. Journal of Environmental Engineering (Japan), 2003, 68, 47-54.	0.4	4
83	Numerical comfort simulator for evaluating thermal environment. Elsevier Ergonomics Book Series, 2005, , 459-466.	0.1	4
84	COVARIANCE STRUCTURAL MODELING-BASED MULTI-GROUP ANALYSIS AMONG LIVING ENVIRONMENT, HOUSEWORK AND CHRONIC LOW BACK PAIN. Journal of Environmental Engineering (Japan), 2013, 78, 655-660.	0.4	4
85	EFFECT OF POWER SAVING MEASURES ON COMFORT, PRODUCTIVITY AND ENERGY CONSERVATION. Journal of Environmental Engineering (Japan), 2014, 79, 901-908.	0.4	4
86	EFFECTS OF THERMAL LOAD AND ITS VARIATION ON SLEEP. Journal of Environmental Engineering (Japan), 2015, 80, 917-923.	0.4	4
87	DESIGN AND CONSTRUCTION OF ZERO ENERGY HOUSE. All Journal of Technology and Design, 2016, 22, 1049-1052.	0.3	4
88	Longitudinal study of housing for the promotion of health and wellâ€being using a covariance structure model to identify the causal relationships between satisfaction with living environment, stress, and chronic low back pain. Japan Architectural Review, 2018, 1, 154-166.	1.1	4
89	Relationship between attributes of individual workers and concentration at work. E3S Web of Conferences, 2019, 111, 02050.	0.5	4
90	DEVELOPMENT OF NUMERICAL THERMOREGULATION-MODEL COM FOR EVALUATION OF THERMAL ENVIRONMENT. Journal of Environmental Engineering (Japan), 2006, 71, 31-38.	0.4	4

		IF	CITATIONS
	N BODY AND RECTANGULAR PLANES CALCULATED BY A NUMERICAL ikakukei Ronbunshu, 1999, 64, 15-22.	0.3	4
	METROPOLITAN GOVERNMENT TOP LEVEL CERTIFICATES ON THE NET EXPENSES IN J-REIT OWNED OFFICE BUILDINGS. Journal of Environmental -279.	0.4	4
93 EVALUATION OF THERMAL ENVIRC Journal of Environmental Engineering	NMENT CONSIDERING THE EFFECTS OF BODY MOVEMENT DURING SLEEP. ng (Japan), 2018, 83, 831-838.	0.4	4
	S AS A MEASURE FOR COVID-19 AND ITS IMPACT ON VENTILATION RATE IN TARY SCHOOL IN TOKYO. Journal of Environmental Engineering (Japan),	0.4	4
95 Effects of Skin Surface Temperatur Applied Human Science: Journal of	e Distribution of Thermal Manikin on Clothing Thermal Insulation Physiological Anthropology, 1997, 16, 181-189.	0.2	3
96 Effects of the Solar Reduction Glas Simulation. , 0, , .	s on the Car Occupant's Thermal Comfort by a Numerical		3
97 SUBJECTIVE EXPERIMENT FOR THE Environmental Engineering (Japan)	EFFECT OF ROAD TRAFFIC NOISE ON PRODUCTIVITY. Journal of , 2008, 73, 355-362.	0.4	3
98 EFFECT OF SAVING MEASURES ON Engineering (Japan), 2013, 78, 793	POWER CONSUMPTION REDUCTION. Journal of Environmental -798.	0.4	3
	SSION RATE FROM BUILDING PRODUCTS AND DAILY GOODS BY USING onmental Engineering (Japan), 2016, 81, 209-216.	0.4	3
	yde concentration in confined small glass desiccators and its ent. Atmospheric Environment, 2019, 218, 116979.	4.1	3
101 Effect of thermal environment on s Japan Architectural Review, 2021, 4	leep quality in actual bedroom in summer by sleep stages analysis. ŧ, 211-221.	1.1	3
102 BUILDING WELLNESS PERFORMAN (Japan), 2021, 86, 271-278.	CE AND WORK ENGAGEMENT. Journal of Environmental Engineering	0.4	3
	SK CONDITIONING SYSTEM WITH INDIVIDUAL CONTROL ON THERMAL urnal of Environmental Engineering (Japan), 2004, 69, 75-82.	0.4	3
	AND VOCS EMISSION RATES FROM BUILDING MATERIALS WITH A SMALL chnology and Design, 2000, 6, 153-157.	0.3	3
105 BENEFITS OF NON-ISOTHERMAL TA Engineering (Japan), 2005, 70, 67-7	ASK CONDITIONING SYSTEM IN OFFICE. Journal of Environmental 74.	0.4	3
106 A PROPOSAL AND PRACTICE OF &I ENEMANEHOUSE 2015. All Journal	dquo;WASEDA LIVE HOUSE", A ZERO ENERGY HOUSE, IN of Technology and Design, 2017, 23, 545-548.	0.3	3
	OD FOR THERMAL ENVIRONMENT UTILIZING CASBEE HOUSING HEALTH cal Engineering (Japan), 2018, 83, 533-542.	0.4	3

108 āf⁻āf¼ā,«āf¼å±žæ€§ā«ā,^ā,‹ā,ªāf•ā,£ā,¹ā₽知çš,,ç"Ÿç"£æ€§è©•価ã«é−¢ã™ã,‹ç"ç©¶. Journal of Environmentæb⊉ngineerøng (Japan)

#	Article	IF	CITATIONS
109	WORKER'S SATISFACTION AND WORKPLACE PRODUCTIVITY IN MEGA PLATE OFFICES WITH ACTIVITY-BASED WORKING. Journal of Environmental Engineering (Japan), 2021, 86, 818-828.	0.4	3
110	Predicting the infection probability distribution of airborne and droplet transmissions. Indoor and Built Environment, 2023, 32, 1900-1913.	2.8	3
111	Evaluation of comfort of thermal environment in vehicle occupant compartment. Review of Automotive Engineering, 1997, 18, 74-75.	0.2	2
112	TRANSIENT THERMAL COMFORT SUCCEEDING A SHORT WALK IN A BUFFER SPACE FROM OUTDOOR TO INDOOR. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2003, 68, 33-40.	0.3	2
113	Effects of spectral properties of glass on the thermal comfort of car occupants. Elsevier Ergonomics Book Series, 2005, , 289-297.	0.1	2
114	SUBJECTIVE EXPERIMENTS ON PRODUCTIVITY UNDER 800LX AND 3LX LIGHTING CONDITIONS. Journal of Environmental Engineering (Japan), 2008, 73, 349-353.	0.4	2
115	ENERGY FORECAST OF AIR-CONDITIONER IN PUBLIC ELEMENTARY SCHOOLS. Journal of Environmental Engineering (Japan), 2009, 74, 1253-1259.	0.4	2
116	A STUDY ON REDUCTION OF CHEMICAL SUBSTANCE EMISSION FACTOR WITH SEALER SOLVENTS MITIGATION EFFECTS ON SEALER PAINTS FOR CHEMICAL SUBSTANCES EMITTED FROM BUILDING MATERIALS. Journal of Environmental Engineering (Japan), 2010, 75, 987-992.	0.4	2
117	INFLUENCE OF BUILDING INSULATION PERFORMANCE AND HEATING SYSTEMS ON THERMAL ENVIRONMENT AND ENERGY PERFORMANCE. Journal of Environmental Engineering (Japan), 2011, 76, 231-238.	0.4	2
118	THERMAL COMFORT AND ENERGY INPUT OF HEATING SYSTEM BASED ON EQUIVALENT TEMPERATURE OF A THERMAL MANIKIN. Journal of Environmental Engineering (Japan), 2014, 79, 1029-1035.	0.4	2
119	ENVIRONMENTAL SURFACE CONTAMINATION MEASURED BY ATP ASSAY AND ATTITUDE SURVEY OF MEDICAL AND CLEANING STAFF IN THE EXAMINATION ROOM. Journal of Environmental Engineering (Japan), 2016, 81, 893-899.	0.4	2
120	ENVIRONMENTAL SURFACE CONTAMINAION EXAMINED BY ATP ASSAY BEFORE AND AFTER TERMINAL ROOM CLEANING IN PATIENT ROOMS. Journal of Environmental Engineering (Japan), 2016, 81, 723-729.	0.4	2
121	International Journal of Japan Architectural Review for Engineering and Design: Launch of JAR. Japan Architectural Review, 2018, 1, 2-3.	1.1	2
122	Efficient Operation of Heat Source using High-temperature Chilled Water in an Advanced Office Building. E3S Web of Conferences, 2019, 111, 03071.	0.5	2
123	RESIDENTIAL PNEUMATIC FLOOR-HEATING SYSTEM USING PHASE-CHANGE MATERIAL. Journal of Environmental Engineering (Japan), 2019, 84, 271-280.	0.4	2
124	DIFFERENCES IN THE STRUCTURE OF THE INFLUENCE OF OFFICE DESIGN PREFERENCES ON INTELLECTUAL PRODUCTIVITY. Journal of Environmental Engineering (Japan), 2021, 86, 567-577.	0.4	2
125	SURFACE WEIGHTING FACTORS OF THE WHOLE HUMAN BODY FOR EXPRESSING THE THERMAL RADIATION FIELD BY A NUMERICAL CALCULATION. Journal of Environmental Engineering (Japan), 2003, 68, 47-50.	0.4	2
126	EFFECTS OF HUMIDITY STEP CHANGE ON HUMAN COMFORT AND PRODUCTIVITY FROM HOT AND HUMID CONDITION TO THERMALLY NEUTRAL CONDITION. Journal of Environmental Engineering (Japan), 2006, 71, 15-21.	0.4	2

#	Article	IF	CITATIONS
127	MEASUREMENT OF LOCAL EVAPORATIVE RESISTANCE OF TYPICAL CLOTHING ENSEMBLE USING A SWEATING THERMAL MANIKIN. Journal of Environmental Engineering (Japan), 2019, 84, 653-660.	0.4	2
128	A PREDICTION METHOD OF INDOOR FORMALDEHYDE CONCENTRATION USING AN EXPERIMENTAL HOUSE. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2002, 67, 55-61.	0.3	2
129	EFFECTS OF LOW HUMIDITY AND WEARING CONTACT LENSES ON HUMAN BODY DURING SUMMER SEASON. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2003, 68, 17-23.	0.3	2
130	THE EFFECT OF CONTROLLING ILLUMINANCE LEVEL WITH TASK LIGHTS ON PRODUCTIVITY. Journal of Environmental Engineering (Japan), 2006, 71, 101-109.	0.4	2
131	Improvements to the cooling capacity measurements of suspended radiant ceiling panels to prevent under-sizing. Journal of Building Engineering, 2022, 51, 104242.	3.4	2
132	VOCs MEASUREMENT USING SAMPLING BAG. Journal of Environmental Engineering (Japan), 2008, 73, 911-916.	0.4	1
133	SURVEY RESEARCH ON THE REGULATIONS FOR ENERGY EFFICIENCY OF RESIDENTIAL AND NON-RESIDENTIAL BUILDINGS IN THE FOREIGN COUNTRIES. All Journal of Technology and Design, 2013, 19, 225-230.	0.3	1
134	LIVING ENVIRONMENT AND DAILY ACTIVITY RELATED TO CHRONIC LOW BACK PAIN. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2013, 78, 2457-2464.	0.3	1
135	Integrating requirements for the delivery of information relating to construction–product compositions. Indoor and Built Environment, 2014, 23, 653-664.	2.8	1
136	LONGITUDINAL STUDY OF HOUSING FOR THE PROMOTION OF HEALTH AND WELL-BEING. Journal of Environmental Engineering (Japan), 2015, 80, 279-287.	0.4	1
137	PREDICTING LOCAL THERMAL SENSATION BY USING OF THERMOREGULATION MODEL. Journal of Environmental Engineering (Japan), 2016, 81, 795-802.	0.4	1
138	Development of prediction-based operation planning method for domestic air-conditioner with adaptive learning of installation environment. , 2017, , .		1
139	Review on the Surface Heat Transfer Coefficients of Radiant Systems. E3S Web of Conferences, 2019, 111, 01075.	0.5	1
140	Coupling of a cardiovascular model with a thermoregulation model to predict human blood pressure under unsteady environmental conditions. E3S Web of Conferences, 2019, 111, 02062.	0.5	1
141	The emission rate of newly regulated chemical substances from building materials. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042046.	0.6	1
142	PROPOSAL OF RENOVATION TO ZERO ENERGY HOUSE (ZEH) FROM AN EXISTING INDUSTRIALIZED HOUSE. AIJ Journal of Technology and Design, 2019, 25, 239-242.	0.3	1
143	EVALUATION OF THE EFFECTIVENESS OF COMBINED POWER GENERATION USING PHOTOVOLTAIC GENERATION AND SOLID OXIDE FUEL CELLS BASED ON LIFESTYLE. Journal of Environmental Engineering (Japan), 2021, 86, 548-556.	0.4	1
144	IDENTIFICATION AND EMISSION RATE MEASUREMENT OF CHEMICAL COMPOUNDS EMITTED FROM THE PREFORMED CELLULAR PLASTICS THERMAL INSULATING MATERIALS. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2001, 66, 25-30.	0.3	1

#	Article	IF	CITATIONS
145	NUMERICAL ANALYSIS OF DIFFUSION FIELDS IN PASSIVE TYPE FLUX SAMPLER AND ESTIMATION OF EFFECTIVE DIFFUSION LENGTH. Journal of Environmental Engineering (Japan), 2006, 71, 47-54.	0.4	1
146	EFFECTS OF HUMIDITY AND INDOOR AIR CHEMICAL POLLUTANTS ON SUBJECTIVE THERMAL COMFORT AND PRODUCTIVITY. Journal of Environmental Engineering (Japan), 2003, 68, 31-37.	0.4	1
147	MEASUREMENT OF INDOOR AIR QUALITY IN KOREAN HOUSES BY PASSIVE METHODS. Journal of Environmental Engineering (Japan), 2006, 71, 31-38.	0.4	1
148	Comparison of Calculation Methods for Basic Clothing Insulation with a Thermal Manikin Journal of Fiber Science and Technology, 1994, 50, 180-187.	0.0	1
149	THE EFFECTS OF SVOC CONTAMINATION ON INDOOR ENVIRONMENT WITH USED PVC SHEETS IN INDOOR. Journal of Environmental Engineering (Japan), 2017, 82, 51-57.	0.4	1
150	Measuring Degree of Contamination by Semi-volatile Organic Compounds (SVOC) in Interiors of Korean Homes and Kindergartens. Journal of Asian Architecture and Building Engineering, 2017, 16, 661-668.	2.0	1
151	ENERGY CONSUMPTION SURVEY OF ELEMENTARY SCHOOLS WITH AIR-CONDITIONER IN URBAN AREA. Journal of Environmental Engineering (Japan), 2018, 83, 385-391.	0.4	1
152	USEFULNESS VERIFICATION BY SUBJECTIVE EXPERIMENT OF EVALUATION METHOD FOR THERMAL ENVIRONMENT "SCORE ON THE WARMTH―UTILIZING CASBEE HOUSING HEALTH CHECKLIST. Journal of Environmental Engineering (Japan), 2019, 84, 845-854.	0.4	1
153	POWER SUPPLY AND DEMAND OF ALL-ELECTRIFIED NET ZERO ENERGY HOUSES. Journal of Environmental Engineering (Japan), 2020, 85, 685-694.	0.4	1
154	PRE-COOLING OPERATION AIMING FOR DEMAND RESPONSE ADAPTATION IN HOUSE. Journal of Environmental Engineering (Japan), 2020, 85, 215-224.	0.4	1
155	Field investigation of odor intensity and acceptability of tobacco smoke in air-conditioned spaces. Environment International, 1991, 17, 277-285.	10.0	0
156	FIELD STUDY ON THE THERMAL COMFORT AND VENTILATION EFFECTIVENESS IN A CONCERT HALL WITH DISPLACEMENT VENTILATION SYSTEM. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2002, 67, 37-44.	0.3	0
157	DEFINITION OF HVAC SYSTEM COMPONENT WITH OBJECT ORIENTED LANGUAGE FOR MODULAR STRUCTURE SIMULATION PROGRAM. Journal of Environmental Engineering (Japan), 2008, 73, 1377-1382.	0.4	0
158	PERFORMANCE EVALUATION AND LOAD LEVELING EFFECT BY NATRIUM-SALFER BATTERY SYSTEM BASED ON BMS DATA. Journal of Environmental Engineering (Japan), 2008, 73, 61-67.	0.4	0
159	THE THERMAL PERFORMANCE BY FUTURE FORECAST MODEL OF GLASS FACADE BUILDINGS. Journal of Environmental Engineering (Japan), 2009, 74, 1283-1289.	0.4	0
160	PRODUCTIVITY IN OFFICE WITH ELEVATED PRESET TEMPERATURE IN SUMMER. Journal of Environmental Engineering (Japan), 2009, 74, 1329-1337.	0.4	0
161	EXPERIMENTAL PROOF OF ENERGY SAVING EFFECT BY COMMISSIONING USING HEAT SOURCE SYSTEM SIMULATION FOR A NEWSPAPER PRINTING FACTORY. Journal of Environmental Engineering (Japan), 2009, 74, 991-999.	0.4	0
162	DESIGN INTENT AND THERMAL PERFORMANCE OF FACADE THERMAL DESIGN METHODS IN GLASS FACADE ARCHITECHTURE IN TOKYO. Journal of Environmental Engineering (Japan), 2009, 74, 1347-1354.	0.4	0

#	Article	IF	CITATIONS
163	COMPARISON OF PFT METHOD WITH SF6 CONSTANT-INJECTION, CO2 CONSTANT-CONCENTRATION AND THEORETICAL CALCULATION METHOD FOR VENTILATION MEASUREMENT UNDER CYCLIC REVERSAL. Journal of Environmental Engineering (Japan), 2009, 74, 47-54.	0.4	0
164	METHODOLOGY FOR DEVELOPING REUSABLE OBJECT-ORIENTED SCHEDULER CLASSES APPLICABLE FOR LONG TERM BUILDING ENERGY SIMULATION. Journal of Environmental Engineering (Japan), 2009, 74, 517-523.	0.4	0
165	EFFECTS OF MEASUREMENT PARAMETERS ON VOCs CONCENTRATION IN THE SAMPLING BAG. Journal of Environmental Engineering (Japan), 2010, 75, 79-85.	0.4	0
166	DEVELOPMENT OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM MODEL FOR HVAC SYSTEM ENERGY SIMULATION BASED ON REFRIGERANTS THERMODYNAMIC PROPERTIES. Journal of Environmental Engineering (Japan), 2010, 75, 279-287.	0.4	0
167	INFLUENCE BY THE DIFFERENCES OF METHODS AND AREA RATIOS OF SPECIMENS IN FORMALDEHYDE REDUCTION PERFORMANCE TEST FOR SORPTIVE BUILDING MATERIALS. Journal of Environmental Engineering (Japan), 2011, 76, 35-41.	0.4	0
168	THE MEASUREMENT OF DEHP CONCENTRATION IN HOUSE DUST BEFORE AND AFTER RENOVATION IN KOREA HOUSES AND SVOC EMISSION RATES FROM PVC SHEETS. Journal of Environmental Engineering (Japan), 2011, 76, 617-622.	0.4	0
169	MASS TRANSFER COEFFICIENT IN SMALL CHAMBER WITH AIR FLOW CONTROL UNIT. Journal of Environmental Engineering (Japan), 2012, 77, 873-879.	0.4	0
170	RESEARCH ON DEHP EMISSION UNDER VARYING AIR FLOW VOLUME USING MICRO CHAMBER METHOD. Journal of Environmental Engineering (Japan), 2013, 78, 25-30.	0.4	0
171	WEB-BASED QUESTIONNAIRE SURVEY ON AWARENESS AND MEASURES OF SAVING ELECTRICITY BY REGION ; TOKYO, NAGOYA AND OSAKA. Journal of Environmental Engineering (Japan), 2014, 79, 83-92.	0.4	0
172	The Concentration of Di(2-Ethylhexyl) Phthalate on a Flooring Surface in Dwelling House. Materials Science Forum, 0, 893, 400-404.	0.3	0
173	Prediction of physiological exertion in hot environments using the JOS-2 thermoregulation model. E3S Web of Conferences, 2019, 111, 02058.	0.5	0
174	Measurement and Operational Improvement in an Office with Thermo Active Building System. E3S Web of Conferences, 2019, 111, 02065.	0.5	0
175	A Renovation Proposal for Zero-Energy Houses: Outline of Building Planning and Evaluation of Thermal Environment. E3S Web of Conferences, 2019, 111, 04001.	0.5	0
176	Evaluation Method for Thermal Environment in Residential Houses Using Score on Warmth. E3S Web of Conferences, 2019, 111, 01007.	0.5	0
177	Proposal and Evaluation of an Equipment Operating Method Using Solar Radiation Prediction in a Zero Energy House. E3S Web of Conferences, 2019, 111, 05003.	0.5	0
178	Evaluation of Short-Distance Airborne Infection Risk Using a Cough Generator. E3S Web of Conferences, 2019, 111, 02028.	0.5	0
179	Effects of Wellness Conscious Buildings on the Well-being and Comfort of Workers. E3S Web of Conferences, 2019, 111, 02047.	0.5	0
180	Thermal Comfort Condition of Passengers in Naturally Ventilated Train Stations. E3S Web of Conferences, 2019, 111, 02069.	0.5	0

#	Article	IF	CITATIONS
181	Application of a heat source system using solar energy with hot water storage. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012049.	0.3	0
182	Climate emergency declaration and best paper awards. Japan Architectural Review, 2020, 3, 3-4.	1.1	0
183	Threeâ€year outcomes and a leap forward in the fourth year of the JAR. Japan Architectural Review, 2021, 4, 419-419.	1.1	0
184	Transdisciplinary areas covered by <i>JAR</i> and Paper of the Year 2020. Japan Architectural Review, 2021, 4, 547-547.	1.1	0
185	Spectral irradiance simulation for evaluating light environments for indoor plants. Japan Architectural Review, 2021, 4, 649.	1.1	0
186	BEHAVIOR OF VOLATILE ORGANIC COMPOUNDS AND ESTIMATION OF EMISSION SOURCES IN A NEWLY CONSTRUCTED APARTMENT HOUSE. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2001, 66, 75-80.	0.3	0
187	FIELD SURVEY ON THERMAL ENVIRONMENT, AIR QUALITY, AND OCCUPANT COMFORT IN A HIGH DENSITY HEAT LOAD OFFICE OCCUPIED BY MULTI-NATIONAL WORKERS. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2001, 66, 45-50.	0.3	0
188	INFLUENCE OF VENTILATION ROUTES UPON FORMALDEHYDE CONCENTRATION IN HOUSES. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2002, 67, 21-27.	0.3	0
189	EVALUATION METHOD OF OUTGASSING FROM CLEANROOM MATERIALS(Environmental Engineering). AlJ Journal of Technology and Design, 2003, 9, 175-179.	0.3	0
190	DEVELOPMENT OF A LARGE CHAMBER FOR MEASUREMENT OF VOCs EMISSION RATES(Environmental) Tj ETQqC	0.0 rgBT /	Overlock 10
191	LONG-TERM EVALUATION ON EMISSION OF FORMALDEHYDE USING EXPERIMANTAL MODEL ROOMS WITH DIFFERENT VENTILATION RATES. Journal of Environmental Engineering (Japan), 2005, 70, 23-29.	0.4	0
192	A STUDY ON CONCENTRATION OF ACETALDEHYDE USING AN EXPERIMENTAL HOUSE. Journal of Environmental Engineering (Japan), 2006, 71, 39-44.	0.4	0
193	Necessity of Zero Energy Building(<feature>Trend of net Zero Energy Building and Energy Saving by) Tj ETQq1 1 244-248.</feature>	0.784314 0.1	rgBT /Overic 0
194	A BASIC STUDY ON CHARACTERISTICS OF MOLD MOVEMENT IN GLASS WOOL HEAT INSULATING MATERIALS. Journal of Environmental Engineering (Japan), 2017, 82, 863-871.	0.4	0
195	ESTIMATION OF EQUIVALENT DIFFUSION LENGTH FOR DESICCATOR GEOMETRIES APPLICABLE TO FORMALDEHYDE EMISSION TEST. Journal of Environmental Engineering (Japan), 2018, 83, 883-889.	0.4	0
196	DEVELOPMENT AND VERIFICATION ON ZERO ENERGY COOL TREE WHICH PROVIDING COOL COMFORT ON HOT SUMMER OUTDOOR. All Journal of Technology and Design, 2020, 26, 619-624.	0.3	0
197	OPERATIONAL STRATEGIES FOR SELF-CONSUMPTION CONSIDERING THE USE OF AN ELECTRIC VEHICLE IN A NET ZERO ENERGY HOUSE. Journal of Environmental Engineering (Japan), 2020, 85, 277-287.	0.4	0
198	The contamination of DEHP on the surfaces of PVC sheet and risk of infants. Journal of Asian Architecture and Building Engineering, 0, , 1-10.	2.0	0

#	Article	IF	CITATIONS
199	EFFECT OF STRESS CAUSED BY INSUFFICIENT SLEEP ON HUMAN BIOEFFLUENTS AND PERCEIVED AIR QUALITY. Journal of Environmental Engineering (Japan), 2022, 87, 113-122.	0.4	0