Anthony A Stephenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3806798/publications.pdf

Version: 2024-02-01

1684188 1872680 7 204 5 6 citations g-index h-index papers 7 7 7 374 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design, synthesis, and evaluation of liver-specific gemcitabine prodrugs for potential treatment of hepatitis C virus infection and hepatocellular carcinoma. European Journal of Medicinal Chemistry, 2021, 213, 113135.	5.5	9
2	Direct Incorporation of Exogenous Glycerol Leads to Increased Triacylglycerol Formation inChlorella vulgaris. Energy & E	5.1	2
3	Enhancement of Algal Biofeedstocks in a Mixotrophic Batch Culture Supplemented with Exogenous Glycerol. FASEB Journal, 2019, 33, 653.2.	0.5	O
4	Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9. Journal of the American Chemical Society, 2018, 140, 3743-3750.	13.7	56
5	Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. Journal of the American Chemical Society, 2018, 140, 2971-2984.	13.7	121
6	Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research. Journal of the American Chemical Society, 2018, 140, 11142-11152.	13.7	10
7	Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response. Chemical Research in Toxicology, 2017, 30, 1240-1249.	3.3	6