Brice Emanuelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/380677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology, 2006, 7, 85-96.	16.1	2,299
2	Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14608-14613.	3.3	403
3	SOCS-3 Is an Insulin-induced Negative Regulator of Insulin Signaling. Journal of Biological Chemistry, 2000, 275, 15985-15991.	1.6	385
4	SOCS-3 Inhibits Insulin Signaling and Is Up-regulated in Response to Tumor Necrosis Factor-α in the Adipose Tissue of Obese Mice. Journal of Biological Chemistry, 2001, 276, 47944-47949.	1.6	367
5	Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots. Diabetes, 2012, 61, 1691-1699.	0.3	247
6	Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism. PLoS ONE, 2011, 6, e21187.	1.1	222
7	Adipose-Specific Deletion of TFAM Increases Mitochondrial Oxidation and Protects Mice against Obesity and Insulin Resistance. Cell Metabolism, 2012, 16, 765-776.	7.2	206
8	Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation, 2014, 124, 515-527.	3.9	201
9	PKCÎ′ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011, 121, 2504-2517.	3.9	115
10	Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metabolism, 2018, 28, 159-174.e11.	7.2	114
11	Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3545-3550.	3.3	97
12	Cross-talk between Insulin and Wnt Signaling in Preadipocytes. Journal of Biological Chemistry, 2012, 287, 12016-12026.	1.6	90
13	CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Science Translational Medicine, 2020, 12, .	5.8	80
14	Surfing the insulin signaling web. European Journal of Clinical Investigation, 2001, 31, 966-977.	1.7	75
15	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	13.5	68
16	FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11, 1421.	5.8	67
17	Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nature Metabolism, 2020, 2, 397-412.	5.1	65
18	Cross Talk between Insulin and Bone Morphogenetic Protein Signaling Systems in Brown Adipogenesis. Molecular and Cellular Biology, 2010, 30, 4224-4233.	1.1	59

BRICE EMANUELLI

#	Article	IF	CITATIONS
19	Insulin Induces Suppressor of Cytokine Signaling-3 Tyrosine Phosphorylation through Janus-activated Kinase. Journal of Biological Chemistry, 2001, 276, 24614-24620.	1.6	52
20	Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cellular Signalling, 2018, 47, 1-15.	1.7	41
21	The Potential Role of SOCS-3 in the Interleukin-1Â-Induced Desensitization of Insulin Signaling in Pancreatic Beta-Cells. Diabetes, 2004, 53, S97-S103.	0.3	40
22	Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Molecular Metabolism, 2017, 6, 1313-1320.	3.0	38
23	The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARÎ ³ expression. Science of the Total Environment, 2019, 670, 67-77.	3.9	25
24	SOCS-1 deficiency does not prevent diet-induced insulin resistance. Biochemical and Biophysical Research Communications, 2008, 377, 447-452.	1.0	23
25	Fasting―and ghrelinâ€induced food intake is regulated by NAMPT in the hypothalamus. Acta Physiologica, 2020, 228, e13437.	1.8	22
26	Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23932-23941.	3.3	19
27	Afadin is a scaffold protein repressing insulin action via <scp>HDAC</scp> 6 in adipose tissue. EMBO Reports, 2019, 20, e48216.	2.0	16
28	White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment. Molecular Metabolism, 2021, 44, 101137.	3.0	13
29	Age-dependent transition from islet insulin hypersecretion to hyposecretion in mice with the long QT-syndrome loss-of-function mutation Kcnq1-A340V. Scientific Reports, 2021, 11, 12253.	1.6	10
30	Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. Hepatology Research, 2019, 49, 1451-1465.	1.8	9
31	Calsyntenin 3β Is Dynamically Regulated by Temperature in Murine Brown Adipose and Marks Human Multilocular Fat. Frontiers in Endocrinology, 2020, 11, 579785.	1.5	7
32	Insulin-induced serine 22 phosphorylation of retinoid X receptor alpha is dispensable for adipogenesis in brown adipocytes. Adipocyte, 2020, 9, 142-152.	1.3	6
33	Pyruvate kinase M2 represses thermogenic gene expression in brown adipocytes. FEBS Letters, 2020, 594, 1218-1225.	1.3	5
34	Dynamic interplay between Afadin S1795 phosphorylation and diet regulates glucose homeostasis in obese mice. Journal of Physiology, 2021, , .	1.3	4
35	Cold-induction of afadin in brown fat supports its thermogenic capacity. Scientific Reports, 2021, 11, 9794.	1.6	3
36	Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. International Journal of Obesity, 2021, , .	1.6	3

#	Article	IF	CITATIONS
37	Ablation of <i>Nampt</i> in AgRP neurons leads to neurodegeneration and impairs fasting†and ghrelinâ€mediated food intake. FASEB Journal, 2021, 35, e21450.	0.2	2
38	Insulin Resistance in the Metabolic Syndrome. , 2011, , 175-198.		2
39	Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Frontiers in Endocrinology, 2022, 13, 839360.	1.5	2