Mihaela Gulea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3805839/publications.pdf

Version: 2024-02-01

91 papers 2,040 citations

257450 24 h-index 265206 42 g-index

117 all docs

 $\begin{array}{c} 117 \\ \text{docs citations} \end{array}$

117 times ranked

2132 citing authors

#	Article	IF	CITATIONS
1	Recent advances in the chemistry of organic thiocyanates. Chemical Society Reviews, 2016, 45, 494-505.	38.1	255
2	Overview of the Chemistry of 2-Thiazolines. Chemical Reviews, 2009, 109, 1371-1401.	47.7	160
3	Mercaptophosphonate Compounds as Broad-Spectrum Inhibitors of the Metallo-β-lactamases. Journal of Medicinal Chemistry, 2010, 53, 4862-4876.	6.4	128
4	Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chemical Communications, 2003, , 2914.	4.1	117
5	Recent Contributions to Hetero Diels-Alder Reactions. Current Organic Chemistry, 2016, 20, 2161-2210.	1.6	68
6	Chiral thiazoline ligands: application in Pd-catalysed allylic substitution. Tetrahedron, 2004, 60, 9263-9272.	1.9	66
7	Synthesis of new chiral thiazoline-containing ligands. Tetrahedron: Asymmetry, 2001, 12, 2851-2859.	1.8	63
8	5-Endo-TrigRadical Cyclizations of Bromomethyldimethylsilyl Diisopropylpropargylic Ethers. A Highly Diastereoselective Access to Functionalized Cyclopentanes. Journal of Organic Chemistry, 1999, 64, 4920-4925.	3.2	62
9	Cyclocarbopalladation/Cross-Coupling Cascade Reactions in Sulfide Series: Access to Sulfur Heterocycles. Organic Letters, 2014, 16, 3060-3063.	4.6	51
10	Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. Molecules, 2020, 25, 3147.	3.8	48
11	Ruthenium–porphyrin-catalyzed carbenoid addition to allylic compounds: application to [2,3]-sigmatropic rearrangements of ylides. Journal of Organometallic Chemistry, 2001, 617-618, 360-363.	1.8	45
12	1,4-Hydrogen Radical Transfer as a New and Versatile Tool for the Synthesis of Enantiomerically Pure 1,2,3-Triols. Organic Letters, 2000, 2, 2591-2594.	4.6	43
13	Practical Access to Aromatic Thiocyanates by CuCNâ€Mediated Direct Aerobic Oxidative Cyanation of Thiophenols and Diaryl Disulfides. European Journal of Organic Chemistry, 2014, 2014, 7814-7817.	2.4	42
14	Pyridinedithioesters as Heterodienophiles:  Application to the Synthesis of Aprikalim. Organic Letters, 2006, 8, 1033-1036.	4.6	39
15	Application of chiral 2,6-bis(thiazolinyl)pyridines in asymmetric Ru-catalyzed cyclopropanations with diazoesters. Tetrahedron: Asymmetry, 2004, 15, 2569-2573.	1.8	36
16	Chemo- and enantioselective sulfoxidation of bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) into chiral BEDT-TTF-sulfoxide. Chemical Communications, 2008, , 220-222.	4.1	33
17	Synthesis of chiral, nonracemic α-sulfanylphosphonates and derivatives. Tetrahedron: Asymmetry, 2003, 14, 1829-1836.	1.8	32
18	First catalytic enantioselective version of a thia hetero-Diels–Alder reaction with dithioesters. Tetrahedron Letters, 2010, 51, 6014-6017.	1.4	30

#	Article	IF	Citations
19	Cyclopropanation of alkenes with diisopropyl diazomethylphosphonate catalysed by ruthenium porphyrin complexes. Journal of Molecular Catalysis A, 2003, 201, 79-91.	4.8	29
20	A Hetero-Dielsâ^'Alder Approach to Phosphonothiashikimic Acid and New Thiaglycosides. European Journal of Organic Chemistry, 2004, 2004, 160-172.	2.4	28
21	Cyclocarbopalladation as a Key Step in Cascade Reactions: Recent Developments. Synthesis, 2017, 49, 1767-1784.	2.3	28
22	Aerobic Copper-Mediated Domino Three-Component Approach to 2-Aminobenzothiazole Derivatives. Organic Letters, 2016, 18, 2588-2591.	4.6	27
23	A Multidisciplinary Approach to the Use of Pyridinyl Dithioesters and Their N-Oxides as CTAs in the RAFT Polymerization of Styrene. Not the Chronicle of a Failure Foretold. Macromolecules, 2005, 38, 7610-7618.	4.8	26
24	Regulation of branched-chain amino acid biosynthesis by \hat{l}_{\pm} -acetolactate decarboxylase in $\langle i \rangle$ Streptococcus thermophilus $\langle i \rangle$. Letters in Applied Microbiology, 2003, 36, 399-405.	2.2	24
25	(N,N) vs. (N,S) chelation of palladium in asymmetric allylic substitution using bis(thiazoline) ligands: A theoretical and experimental study. Journal of Organometallic Chemistry, 2008, 693, 2499-2508.	1.8	23
26	Synthesis of Benzo[<i>c</i>]silole Derivatives Bearing a Tetrasubstituted Exocyclic C=C Double Bond by Palladium atalyzed Domino Reactions. Chemistry - A European Journal, 2017, 23, 7458-7462.	3.3	20
27	Synthesis of New Asymmetric Phosphonylated Thiazolines and their Use in Olefination Reactions. Synthesis, 2000, 2000, 1143-1147.	2.3	19
28	Thio- and Dithioesters as Dipolarophiles in Reactions with Thiocarbonyl Ylides. European Journal of Organic Chemistry, 2005, 2005, 1604-1612.	2.4	18
29	Sigmatropic [2,3]-wittig rearrangement of \hat{l} ±-allylic-heterosubstituted methylphosphonates. Part 2: Rearrangement in the nitrogen series. Tetrahedron, 1996, 52, 2075-2086.	1.9	17
30	The First Asymmetric Synthesis of α-Sulfanylphosphonates. Organic Letters, 2000, 2, 3757-3759.	4.6	17
31	First synthesis of a phosphonothiashikimic acid derivative. Chemical Communications, 2001, , 611-612.	4.1	17
32	Asymmetric diastereoselective thia-hetero-Dielsâ€"Alder reactions of dithioesters. Tetrahedron, 2012, 68, 2326-2335.	1.9	17
33	Asymmetric version of P-S to P-C [1,3]-sigmatropic rearrangement in the ferrocene series. Tetrahedron: Asymmetry, 2005, 16, 3003-3010.	1.8	16
34	Cyclopropyl phosphonate ester synthesis catalyzed by ruthenium porphyrins: first characterization of a phosphonate carbene complex. Tetrahedron Letters, 2002, 43, 3685-3687.	1.4	15
35	[2 + 3]-Cycloadditions of PhosphonodithioformateS-Methanides with CS, NN, and CC Dipolarophiles. Helvetica Chimica Acta, 2005, 88, 2582-2592.	1.6	15
36	Efficient synthesis of primary 2-aminothiols from 2-aminoalcohols and methyldithioacetate. Tetrahedron Letters, 2008, 49, 6553-6555.	1.4	15

#	Article	IF	CITATIONS
37	Versatile Synthesis of Secondary 2â€Amino Thiols and/or Their Disulfides via Thiazolinium Salts. European Journal of Organic Chemistry, 2009, 2009, 4357-4364.	2.4	15
38	Synthesis of Phosphorus-Containing Chitosan Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 872-889.	1.6	15
39	Pummerer-type reactions in the (2-methylsulfanyl-2-phosphonyl) thiopyran 1-oxide series. Tetrahedron Letters, 2008, 49, 4329-4332.	1.4	14
40	Synthesis of Benzimidazoleâ€Fused Mediumâ€Sized <i>N,S</i> â€Heterocycles via Palladiumâ€Catalyzed Cyclizations. European Journal of Organic Chemistry, 2019, 2019, 1361-1370.	2.4	14
41	[2,3]-Sigmatropic Rearrangement of Ylides Resulting from the Reaction of a Diazomethylphosphonate with Allylic Sulfides. Synthesis of New α-Phosphorylated Unsaturated Sulfides. Synthesis, 1998, 1998, 1635-1639.	2.3	13
42	Asymmetric Three-Component Domino Reaction: An Original Access to Chiral Nonracemic 1,3-Thiazin-2-ones. Organic Letters, 2013, 15, 5710-5713.	4.6	13
43	One-Step Synthesis of 2-Phosphonothiolanes by a New Pummerer-Phosphorylation Reaction: Stereoselective S-Oxidation. Synthesis, 2001, 2001, 1623-1626.	2.3	12
44	[2,3]-Wittig rearrangement in the $\hat{l}\pm$ -allyloxy methylphosphonate series. Journal of Organometallic Chemistry, 1994, 464, C14-C16.	1.8	11
45	Comparative study on the reactivity of propargyl and alkynyl sulfides in palladium-catalyzed domino reactions. Comptes Rendus Chimie, 2017, 20, 624-633.	0.5	11
46	Tandem Double-Cross-Coupling/Hydrothiolation Reaction of 2-Sulfenyl Benzimidazoles with Boronic Acids. Organic Letters, 2019, 21, 5943-5947.	4.6	11
47	1D and 2D Silver-Based Coordination Polymers with Thiomorpholine-4-carbonitrile and Aromatic Polyoxoacids as Coligands: Structure, Photocatalysis, Photoluminescence, and TD-DFT Study. Crystal Growth and Design, 2020, 20, 4461-4478.	3.0	11
48	Sustainable Synthetic Approaches Involving Thiocyanation and Sulfur- Cyanation: An Update. Current Green Chemistry, 2020, 7, 201-216.	1.1	11
49	Facile access to \hat{I}^3 -aminothiols from 1,3-thiazines via a microwave-assisted three-component reaction. Tetrahedron, 2012, 68, 9016-9022.	1.9	10
50	Synthesis of sulfur heterocycles <i>via</i> domino metal-mediated reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 162-165.	1.6	10
51	Asymmetric synthesis of α-sulfinylphosphonates in the thiolane series. Tetrahedron: Asymmetry, 2005, 16, 651-655.	1.8	9
52	Synthesis of chiral thiazoline ligands tethered to a sulfur function and first immobilization of a thiazolineâ€ligand. Heteroatom Chemistry, 2010, 21, 242-249.	0.7	9
53	A Domino Knoevenagel/1,6â€Heteroelectrocyclization Sequence to Access Phosphonoâ€2 <i>H</i> àâ€thiopyrans. European Journal of Organic Chemistry, 2007, 2007, 4948-4952.	2.4	8
54	Thiazolinium salt: an efficient catalyst for the Mukaiyama reaction. Tetrahedron Letters, 2009, 50, 7239-7241.	1.4	8

#	Article	IF	CITATIONS
55	Diastereoselective Michael additions to $\hat{l}\pm,\hat{l}^2$ -unsaturated $\hat{l}\pm$ -sulfinyl phosphonates in the thiolane series. Tetrahedron Letters, 2007, 48, 351-355.	1.4	7
56	On the Actual EPR Detection of Thioacyl Radicals. Organic Letters, 2008, 10, 3327-3330.	4.6	7
57	Michael addition to a chiral non-racemic 2-phosphono-2,3-didehydrothiolane S-oxide. Tetrahedron: Asymmetry, 2009, 20, 293-297.	1.8	7
58	Synthesis of Methylene Bisphosphonates from Carbon Disulfide and Phosphites via Desulfurization: A Mechanistic Study. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 820-829.	1.6	7
59	Synthetic Methodologies for the Preparation of βâ€Amino Thiols. European Journal of Organic Chemistry, 2012, 2012, 5423-5434.	2.4	7
60	Recent Developments in Asymmetric Hetero-Diels-Alder Reactions of Dithioesters. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 349-355.	1.6	7
61	8.15 Reduction of SO and SO2 to S, S–X to S–H, and PO to P. , 2014, , 535-563.		7
62	Synthesis of 1,3-thiazines by a three-component reaction and their transformations into \hat{l}^2 -lactam-condensed 1,3-thiazine and 1,4-thiazepine derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 220-229.	1.6	7
63	2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior. CrystEngComm, 2021, 23, 4799-4815.	2.6	7
64	Asymmetric oxidation of sulfenates to sulfinates as a new route to optically active ortho-phosphorylated phenyl sulfoxides. Tetrahedron: Asymmetry, 2005, 16, 3406-3415.	1.8	6
65	Synthesis of 3-amino-thiochromanes from 4-benzyl 2-thiazolines, via an unprecedented intramolecular electrophilic aromatic substitution. Organic and Biomolecular Chemistry, 2010, 8, 2520.	2.8	6
66	Ortho-(methylsulfanyl)phenylphosphonates and derivatives: Synthesis and applications as mono- or bidentate ligands for the preparation of platinum complexes. Journal of Organometallic Chemistry, 2013, 745-746, 206-213.	1.8	6
67	Synthesis of Sulfur-Containing <i>Exo</i> -Bicyclic Dienes and Their Diels–Alder Reactions To Access Thiacycle-Fused Polycyclic Systems. Journal of Organic Chemistry, 2018, 83, 4505-4515.	3.2	6
68	Synthesis of new 2-C-(2,3:5,6-di-O-isopropylidene)-Î ² -d-mannofuranosyldithioacetate derivatives. Carbohydrate Research, 2005, 340, 579-586.	2.3	5
69	Silver-based monomer and coordination polymer with organic thiocyanate ligand: Structural, computational and antiproliferative activity study. Polyhedron, 2019, 173, 114132.	2.2	4
70	Endocyclic Enamides Derived from Azaâ€Diketopiperazines as Olefin Partners in Povarov Reaction: An Access to Tetracyclic Nâ€Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 7385-7395.	2.4	4
71	A Synthetic Route to Benzothiazocines with Two or Three Carbon Stereocenters via Copper atalyzed Intramolecular Nâ€Arylation. European Journal of Organic Chemistry, 2021, 2021, 2203-2211.	2.4	4
72	Generation and Reactivity of \hat{l} ±-Phosphorylated Sulfur Stabilised Carbanions and Ylides; Selective Syntheses of \hat{l} ±-Thiosubstituted Phosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 153, 327-328.	1.6	3

#	Article	IF	CITATIONS
73	Efficient New Protocol to Synthesize Aromatic and Heteroaromatic Dithioesters. Synthesis, 2004, 2004, 928-934.	2.3	3
74	New Chiral Ortho-P,S-Difunctionalized Aromatic Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1267-1272.	1.6	3
75	Study of Intramolecular Competition between Carboxylate and Phosphonate for Ptll with the Aid of a Novel Tridentate Carboxylato-Thioether-Phosphonato Ligand. Chemistry - A European Journal, 2007, 13, 5441-5449.	3.3	3
76	Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study. Crystal Growth and Design, 2020, 20, 3018-3033.	3.0	3
77	Three cheers for nitrogen: aza-DKPs, the aza analogues of 2,5-diketopiperazines. RSC Advances, 2020, 10, 43358-43370.	3.6	3
78	O453 Mercapto-phosphonate compounds as broad-spectrum inhibitors of the metallo-b -lactamases. International Journal of Antimicrobial Agents, 2007, 29, S95.	2.5	2
79	Recent Advances in the Chemistry of Difunctionalized Organo-Phosphorus and Organo-Sulfur Compounds. ChemInform, 2004, 35, no.	0.0	1
80	Diastereoselective oxidation of menthyl arenesulfenates to sulfinates and access to enantioenriched aryl methyl sulfoxides. Chemical Papers, 2021, 75, 6137-6143.	2.2	1
81	Progress in the Chemistry of Phosphorothioates. Advances in Organic Synthesis, 2018, , 117-150.	0.5	1
82	Synthesis of Chiral, Nonracemic α-Sulfanylphosphonates and Derivatives ChemInform, 2003, 34, no.	0.0	0
83	Synthesis and Properties of Thiazoline Based Ionic Liquids Derived from the Chiral Pool ChemInform, 2004, 35, no.	0.0	0
84	A Hetero-Diels—Alder Approach to Phosphonothiashikimic Acid and New Thiaglycosides ChemInform, 2004, 35, no.	0.0	0
85	Application of Chiral 2,6-Bis(thiazolinyl)pyridines in Asymmetric Ru-Catalyzed Cyclopropanations with Diazoesters ChemInform, 2004, 35, no.	0.0	0
86	Chiral Thiazoline Ligands: Application in Pd-Catalyzed Allylic Substitution ChemInform, 2005, 36, no.	0.0	0
87	Asymmetric Synthesis of α-Sulfinylphosphonates in the Thiolane Series ChemInform, 2005, 36, no.	0.0	0
88	Asymmetric Syntheses of α-Sulfinylphosphonates in the Thiolane Series. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1465-1466.	1.6	0
89	Product Subclass 4: Alk-1-enesulfinic Acids and Derivatives. , 2007, , .		0
90	Hetero-Diels-Alder reactions of new sulfonylsulfines generated from \hat{l}_{\pm} -substituted methylsulfones. Arkivoc, 2011, 2011, 62-73.	0.5	0

ARTICLE IF CITATIONS
91 2.1.3 Domino Transformations Involving an Electrocyclization Reaction., 2016,,. 0