Antonio Musaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3805822/publications.pdf

Version: 2024-02-01

38742 22832 13,010 149 50 112 citations h-index g-index papers 152 152 152 19088 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1 ^{G93A} mice. British Journal of Pharmacology, 2022, 179, 1732-1752.	5.4	21
2	Development of a Novel Technique for the Measurement of Neuromuscular Junction Functionality in Isotonic Conditions. Cellular and Molecular Bioengineering, 2022, 15, 255-265.	2.1	3
3	The hormetic and hermetic role of IL-6. Ageing Research Reviews, 2022, 80, 101697.	10.9	22
4	Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials, 2021, 266, 120435.	11.4	26
5	Sustained Systemic Levels of IL-6 Impinge Early Muscle Growth and Induce Muscle Atrophy and Wasting in Adulthood. Cells, 2021, 10, 1816.	4.1	9
6	Circulating myomiRs in Muscle Denervation: From Surgical to ALS Pathological Condition. Cells, 2021, 10, 2043.	4.1	6
7	Fenretinide Beneficial Effects on Amyotrophic Lateral Sclerosis-associated SOD1G93A Mutant Protein Toxicity: In Vitro and In Vivo Evidences. Neuroscience, 2021, 473, 1-12.	2.3	3
8	A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discovery, 2021, 7, 4.	4.7	36
9	Hyaluronan-Cholesterol Nanogels for the Enhancement of the Ocular Delivery of Therapeutics. Pharmaceutics, 2021, 13, 1781.	4.5	12
10	Optimal force evaluation for isotonic fatigue characterization in mouse Tibialis Anterior muscle. , 2020, , .		2
11	FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nature Cell Biology, 2020, 22, 1307-1318.	10.3	96
12	16th Meeting of the Interuniversity Institute of Myology (IIM) - Assisi (Italy), October 17-20, 2019: Foreword, Program and Abstracts. European Journal of Translational Myology, 2020, 30, 9345.	1.7	0
13	Muscle Homeostasis and Regeneration: From Molecular Mechanisms to Therapeutic Opportunities. Cells, 2020, 9, 2033.	4.1	9
14	Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells, 2020, 9, 1297.	4.1	116
15	Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle. Life Science Alliance, 2020, 3, .	2.8	4
16	Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells, 2019, 8, 906.	4.1	50
17	nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death and Disease, 2019, 10, 354.	6.3	9
18	Neuromuscular magnetic stimulation counteracts muscle decline in ALS patients: results of a randomized, double-blind, controlled study. Scientific Reports, 2019, 9, 2837.	3.3	21

#	Article	IF	Citations
19	Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options. Scientific Reports, 2019, 9, 3185.	3.3	29
20	Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells, 2019, 8, 232.	4.1	49
21	Effects of IGFâ€1 isoforms on muscle growth and sarcopenia. Aging Cell, 2019, 18, e12954.	6.7	146
22	Measuring the Maximum Power of an \$ex~vivo\$ Engineered Muscle Tissue With Isovelocity Shortening Technique. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2404-2411.	4.7	5
23	Detection of the Strains Induced in Murine Tibias by Ex Vivo Uniaxial Loading with Different Sensors. Sensors, 2019, 19, 5109.	3.8	1
24	Increased Circulating Levels of Interleukin-6 Affect the Redox Balance in Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	33
25	Chemotherapeutic agent 5-fluorouracil increases survival of SOD1 mouse model of ALS. PLoS ONE, 2019, 14, e0210752.	2.5	14
26	Counteracting sarcopenia: the role of IGF-1 isoforms. Aging, 2019, 11, 3410-3411.	3.1	11
27	An Overview About the Biology of Skeletal Muscle Satellite Cells. Current Genomics, 2019, 20, 24-37.	1.6	95
28	Functional Electrical Stimulation of Skeletal Muscles in Aging and Premature Aging. Practical Issues in Geriatrics, 2018, , 93-103.	0.8	0
29	The physiopathologic role of oxidative stress in skeletal muscle. Mechanisms of Ageing and Development, 2018, 170, 37-44.	4.6	81
30	Muscle Expression of <i>SOD1^{G93A}</i> Triggers the Dismantlement of Neuromuscular Junction <i>via</i> PKC-Theta. Antioxidants and Redox Signaling, 2018, 28, 1105-1119.	5.4	56
31	Report on Abstracts of the 15th Meeting of IIM, the Interuniversity Institute of Myology - Assisi (Italy), October 11-14, 2018. European Journal of Translational Myology, 2018, 28, 7957.	1.7	3
32	Deficiency in the nuclear long noncoding <scp>RNA</scp> <i>Charme</i> causes myogenic defects and heart remodeling in mice. EMBO Journal, 2018, 37, .	7.8	65
33	The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases. Cytokine and Growth Factor Reviews, 2018, 41, 1-9.	7.2	26
34	Metabolic Changes Associated With Muscle Expression of SOD1G93A. Frontiers in Physiology, 2018, 9, 831.	2.8	50
35	Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Current Genomics, 2018, 19, 356-369.	1.6	39
36	Pharmacological Inhibition of PKCÎ, Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy. EBioMedicine, 2017, 16, 150-161.	6.1	22

#	Article	IF	CITATIONS
37	Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle. Methods in Molecular Biology, 2017, 1553, 155-167.	0.9	24
38	Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway. Human Molecular Genetics, 2017, 26, 2781-2790.	2.9	71
39	Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis. Physiological Reports, 2017, 5, e13153.	1.7	27
40	Identification of the best stimulation parameters to measure in situ the comunication between muscle and nerve in mouse Tibialis muscle. , 2017, , .		4
41	Measuring Neuromuscular Junction Functionality. Journal of Visualized Experiments, 2017, , .	0.3	5
42	The mitochondrial metabolic reprogramming agent trimetazidine as an â€~exercise mimetic' in cachectic C26â€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 954-973.	7.3	63
43	Dynamic Phosphorylation of the Myocyte Enhancer Factor $2C\hat{l}\pm 1$ Splice Variant Promotes Skeletal Muscle Regeneration and Hypertrophy. Stem Cells, 2017, 35, 725-738.	3.2	27
44	Insights into the Pathogenic Secondary Symptoms Caused by the Primary Loss of Dystrophin. Journal of Functional Morphology and Kinesiology, 2017, 2, 44.	2.4	16
45	Increased Circulating Levels of Interleukin-6 Induce Perturbation in Redox-Regulated Signaling Cascades in Muscle of Dystrophic Mice. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	22
46	Stem cells and tissue niche: two faces of the same coin of muscle regeneration. European Journal of Translational Myology, 2016, 26, 6125.	1.7	25
47	FES in Europe and beyond: Current Translational Research. European Journal of Translational Myology, 2016, 26, 6369.	1.7	17
48	A DIC Based Technique to Measure the Contraction of a Skeletal Muscle Engineered Tissue. Applied Bionics and Biomechanics, 2016, 2016, 1-7.	1.1	9
49	The Proteolytic Systems of Muscle Wasting. Recent Advances in DNA & Gene Sequences, 2016, 9, 26-35.	0.7	16
50	Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiological Reports, 2016, 4, e13005.	1.7	71
51	Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skeletal Muscle, 2016, 6, 24.	4.2	15
52	Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. International Journal of Cardiology, 2016, 214, 137-147.	1.7	37
53	Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance. PLoS ONE, 2016, 11, e0160950.	2.5	19
54	Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts. BMC Bioinformatics, 2015, 16, 289.	2.6	8

#	Article	IF	CITATIONS
55	Postmitotic Expression of SOD1 ^{G93A} Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	13
56	MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice. Frontiers in Aging Neuroscience, 2015, 7, 69.	3.4	16
57	Muscle Expression of SOD1G93A Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Frontiers in Cellular Neuroscience, 2015, 9, 463.	3.7	25
58	Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS ONE, 2015, 10, e0137999.	2.5	22
59	Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors. European Journal of Translational Myology, 2015, 25, 231.	1.7	76
60	Muscle IGF-1-Induced Skeletal Muscle Hypertrophy Evokes Higher Insulin Sensitivity and Carbohydrate Use as Preferential Energy Substrate. BioMed Research International, 2015, 2015, 1-8.	1.9	16
61	TAp63gamma is required for the late stages of myogenesis. Cell Cycle, 2015, 14, 894-901.	2.6	19
62	Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Human Molecular Genetics, 2015, 24, 6041-6053.	2.9	51
63	Proliferation of Multiple Cell Types in the Skeletal Muscle Tissue Elicited by Acute p21 Suppression. Molecular Therapy, 2015, 23, 885-895.	8.2	6
64	Functional and Morphological Improvement of Dystrophic Muscle by Interleukin 6 Receptor Blockade. EBioMedicine, 2015, 2, 285-293.	6.1	63
65	Measuring Neuromuscular Junction Functionality in the SOD1G93A Animal Model of Amyotrophic Lateral Sclerosis. Annals of Biomedical Engineering, 2015, 43, 2196-2206.	2.5	16
66	Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Molecular Therapy, 2015, 23, 1189-1200.	8.2	237
67	A Digital Image Correlation based technique to control the development of a skeletal muscle engineered tissue by measuring its surface strain field. , 2015, , .		2
68	SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy. Journal of Cell Biology, 2015, 211, 77-90.	5.2	25
69	New Insights into the Relationship between mIGF-1-Induced Hypertrophy and Ca2+ Handling in Differentiated Satellite Cells. PLoS ONE, 2014, 9, e107753.	2.5	5
70	IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity. BioMed Research International, 2014, 2014, 1-12.	1,9	53
71	The Basis of Muscle Regeneration. Advances in Biology, 2014, 2014, 1-16.	1.2	86
72	Electrical Stimulation Counteracts Muscle Decline in Seniors. Frontiers in Aging Neuroscience, 2014, 6, 189.	3.4	128

#	Article	IF	Citations
73	Involvement of MicroRNAs in the Regulation of Muscle Wasting during Catabolic Conditions. Journal of Biological Chemistry, 2014, 289, 21909-21925.	3.4	129
74	Long-Term High-Level Exercise Promotes Muscle Reinnervation With Age. Journal of Neuropathology and Experimental Neurology, 2014, 73, 284-294.	1.7	136
75	Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology, 2013, 14, 261-272.	3.9	75
76	Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology, 2013, 14, 273-292.	3.9	92
77	Understanding <scp>ALS</scp> : new therapeutic approaches. FEBS Journal, 2013, 280, 4315-4322.	4.7	64
78	Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Scientific Reports, 2013, 3, 1420.	3.3	67
79	DNA damage-activated ABL-MyoD signaling contributes to DNA repair in skeletal myoblasts. Cell Death and Differentiation, 2013, 20, 1664-1674.	11.2	16
80	Dystrophic tendon functionality is recovered by muscle-specific expression of insulin-like growth factor in mdx mice. Journal of Biomechanics, 2013, 46, 604-607.	2.1	4
81	Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology, 2013, 14, 303-323.	3.9	274
82	A necrotic stimulus is required to maximize matrix-mediated myogenesis in mice. DMM Disease Models and Mechanisms, 2013, 6, 793-801.	2.4	6
83	Electrical stimulation counteracts muscle atrophy associated with aging in humans. European Journal of Translational Myology, 2013, 23, 105.	1.7	2
84	Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mlgf-1 Transgenic Mice. PLoS ONE, 2013, 8, e65167.	2.5	24
85	Increased Plin2 Expression in Human Skeletal Muscle Is Associated with Sarcopenia and Muscle Weakness. PLoS ONE, 2013, 8, e73709.	2.5	60
86	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
87	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
88	IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy. Molecular Medicine, 2012, 18, 1076-1085.	4.4	30
89	AvidinOX® for Tissue Targeted Delivery of Biotinylated Cells. International Journal of Immunopathology and Pharmacology, 2012, 25, 239-246.	2.1	6
90	FES Training in Aging: interim results show statistically significant improvements in mobility and muscle fiber size. European Journal of Translational Myology, 2012, 22, 61.	1.7	1

#	Article	IF	Citations
91	Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration. Biomaterials, 2012, 33, 428-443.	11.4	88
92	To the heart of the problem. mIGF-1: local effort for global impact. Aging, 2012, 4, 377-378.	3.1	4
93	Skeletal Muscle Regeneration in Mice Is Stimulated by Local Overexpression of V1a-Vasopressin Receptor. Molecular Endocrinology, 2011, 25, 1661-1673.	3.7	29
94	Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skeletal Muscle, 2011, 1, 3.	4.2	42
95	Impact of ageing on muscle cell regeneration. Ageing Research Reviews, 2011, 10, 35-42.	10.9	118
96	Human Cardiac Progenitor Cell Grafts as Unrestricted Source of Supernumerary Cardiac Cells in Healthy Murine Hearts. Stem Cells, 2011, 29, 2051-2061.	3.2	49
97	Increased IGF-1 in muscle modulates the phenotype of severe SMA mice. Human Molecular Genetics, 2011, 20, 1844-1853.	2.9	96
98	Atrophy/hypertrophy cell signaling in muscles of young athletes trained with vibrational-proprioceptive stimulation. Neurological Research, 2011, 33, 998-1009.	1.3	36
99	Oxidative stress and muscle homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 236-242.	2.5	73
100	Induction of myogenic differentiation by SDFâ€l via CXCR4 and CXCR7 receptors. Muscle and Nerve, 2010, 41, 828-835.	2.2	40
101	MECHANISMS INDUCING LOW BONE DENSITY IN DUCHENNE MUSCULAR DYSTROPHY. Bone, 2010, 46, S79-S80.	2.9	1
102	MicroRNAs Involved in Molecular Circuitries Relevant for the Duchenne Muscular Dystrophy Pathogenesis Are Controlled by the Dystrophin/nNOS Pathway. Cell Metabolism, 2010, 12, 341-351.	16.2	228
103	Isolation and Culture of Mouse Satellite Cells. Methods in Molecular Biology, 2010, 633, 101-111.	0.9	42
104	Regulation of Muscle Atrophy in Aging and Disease. Advances in Experimental Medicine and Biology, 2010, 694, 211-233.	1.6	123
105	State of the art and the dark side of amyotrophic lateral sclerosis. World Journal of Biological Chemistry, 2010, 1, 62.	4.3	31
106	Muscle Involvement and IGF-1 Signaling in Genetic Disorders: New Therapeutic Approaches. Endocrine Development, 2009, 14, 29-37.	1.3	8
107	Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy, 2009, 5, 527-529.	9.1	57
108	Mechanical properties of intact single fibres from wild-type and MLC/mlgf-1 transgenic mouse muscle. Journal of Muscle Research and Cell Motility, 2009, 30, 199-207.	2.0	30

#	Article	IF	CITATIONS
109	Measuring tendon properties in mdx mice: Cell viability and viscoelastic characteristics. Journal of Biomechanics, 2009, 42, 2243-2248.	2.1	14
110	Mechanisms inducing low bone density in Duchenne Muscular Dystrophy. Bone, 2009, 44, S237-S238.	2.9	4
111	Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity. Cell Metabolism, 2009, 9, 110.	16.2	0
112	Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy. Neuron, 2009, 63, 316-328.	8.1	205
113	Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: A comparison study with methylprednisolone. Experimental Neurology, 2009, 220, 349-358.	4.1	58
114	Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging, 2009, 1, 451-457.	3.1	77
115	Mice presenting skeletal muscle hypertrophic phenotype driven by mIGF†overâ€expression have improved carbohydrate metabolism and insulin sensitivity FASEB Journal, 2009, 23, LB109.	0.5	0
116	Measuring Mechanical Properties, Including Isotonic Fatigue, of Fast and Slow MLC/mlgf-1 Transgenic Skeletal Muscle. Annals of Biomedical Engineering, 2008, 36, 1281-1290.	2.5	37
117	Cdk9â€55: A new player in muscle regeneration. Journal of Cellular Physiology, 2008, 216, 576-582.	4.1	18
118	Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity. Cell Metabolism, 2008, 8, 425-436.	16.2	435
119	Local expression of mlgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model. Neurological Research, 2008, 30, 131-136.	1.3	49
120	Long-Term Benefit of Adeno-Associated Virus/Antisense-Mediated Exon Skipping in Dystrophic Mice. Human Gene Therapy, 2008, 19, 601-608.	2.7	65
121	ROCK2 and Its Alternatively Spliced Isoform ROCK2m Positively Control the Maturation of the Myogenic Program. Molecular and Cellular Biology, 2007, 27, 6163-6176.	2.3	46
122	Hypertrophy and atrophy inversely regulate Caveolin-3 expression in myoblasts. Biochemical and Biophysical Research Communications, 2007, 357, 314-318.	2.1	15
123	Cellular and molecular bases of muscle regeneration: The critical role of insulin-like growth factor-1. International Congress Series, 2007, 1302, 89-100.	0.2	1
124	Local expression of IGFâ€1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB Journal, 2007, 21, 1393-1402.	0.5	227
125	The neuroprotective effects of a locally acting IGF-1 isoform. Experimental Gerontology, 2007, 42, 76-80.	2.8	36
126	Stem cell-mediated muscle regeneration and repair in aging and neuromuscular diseases. European Journal of Histochemistry, 2007, 51 Suppl 1, 35-43.	1.5	14

#	Article	IF	Citations
127	Advances in stem cell research: use of stem cells in animal models of muscular dystrophy., 2006,, 103-123.		0
128	Growth Factor Enhancement of Cardiac Regeneration. Cell Transplantation, 2006, 15, 41-45.	2.5	6
129	The Critical Role of Insulin-Like Growth Factor-1 Isoforms in the Physiopathology of Skeletal Muscle. Current Genomics, 2006, 7, 19-32.	1.6	9
130	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, 17, 565-574.	2.7	45
131	Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3758-3763.	7.1	134
132	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, .	2.7	0
133	Vasopressin-dependent Myogenic Cell Differentiation Is Mediated by Both Ca2+/Calmodulin-dependent Kinase and Calcineurin Pathways. Molecular Biology of the Cell, 2005, 16, 3632-3641.	2.1	40
134	Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. Journal of Cell Biology, 2005, 168, 193-199.	5.2	319
135	Growth factor enhancement of muscle regeneration: a central role of IGF-1. Archives Italiennes De Biologie, 2005, 143, 243-8.	0.4	18
136	Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1206-1210.	7.1	233
137	AVP Induces Myogenesis through the Transcriptional Activation of the Myocyte Enhancer Factor 2. Molecular Endocrinology, 2002, 16, 1407-1416.	3.7	23
138	Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. Journal of Cell Biology, 2002, 157, 137-148.	5.2	421
139	Chapter 2 Myofiber specification and survival. Advances in Developmental Biology and Biochemistry, 2002, 11, 33-52.	0.3	0
140	Gene therapy for cardiac cachexia?. International Journal of Cardiology, 2002, 85, 185-191.	1.7	24
141	Insulin-like Growth Factor Isoforms in Skeletal Muscle Aging, Regeneration, and Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 507-518.	1.1	68
142	Localized lgf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 2001, 27, 195-200.	21.4	985
143	Revisiting calcineurin and human heart failure. Nature Medicine, 2000, 6, 2-3.	30.7	35
144	IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 1999, 400, 581-585.	27.8	589

Antonio Musaro

#	Article	IF	CITATIONS
145	Transgenic mouse models of muscle aging. Experimental Gerontology, 1999, 34, 147-156.	2.8	18
146	Maturation of the Myogenic Program Is Induced by Postmitotic Expression of Insulin-Like Growth Factor I. Molecular and Cellular Biology, 1999, 19, 3115-3124.	2.3	139
147	Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15603-15607.	7.1	638
148	Enhanced Expression of Myogenic Regulatory Genes in Aging Skeletal Muscle. Experimental Cell Research, 1995, 221, 241-248.	2.6	92
149	TPA-Induced Differentiation of Human Rhabdomyosarcoma Cells Involves Dephosphorylation and Nuclear Accumulation of Mutant p53. Biochemical and Biophysical Research Communications, 1994, 202, 17-24.	2.1	13