Wallace O Parker Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3805762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie, 2021, 133, 23082.	2.0	6
2	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie - International Edition, 2021, 60, 22900-22907.	13.8	44
3	Functional, Redox-Responsive Poly(phenylene sulfide)-Based Gels. Macromolecules, 2019, 52, 8256-8265.	4.8	13
4	Infrared Fingerprint Engineering: A Molecularâ€Design Approach to Longâ€Wave Infrared Transparency with Polymeric Materials. Angewandte Chemie, 2019, 131, 17820-17824.	2.0	12
5	Infrared Fingerprint Engineering: A Molecularâ€Design Approach to Longâ€Wave Infrared Transparency with Polymeric Materials. Angewandte Chemie - International Edition, 2019, 58, 17656-17660.	13.8	57
6	Insights into Polymerization of Vegetable Oil: Oligomerization of Oleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1181-1184.	1.9	4
7	Chiral ionic liquids supported on natural sporopollenin microcapsules. RSC Advances, 2018, 8, 21174-21183.	3.6	35
8	Synthesis and characterization of Si/Ga Eni Carbon Silicates. Chinese Journal of Catalysis, 2015, 36, 813-819.	14.0	6
9	Stable Pervanadyl Cation Encapsulated in Silica: Frivolous Vanadium in the H ₄ PVMo ₁₁ O ₄₀ Keggin. Journal of Physical Chemistry C, 2015, 119, 24003-24015.	3.1	3
10	Homogeneous and heterogeneous cyclopentadienyl-arene titanium catalysts for selective ethylene trimerization to 1-hexene. Journal of Organometallic Chemistry, 2015, 777, 57-66.	1.8	18
11	Flexible Structure of a Thermally Stable Hybrid Aluminosilicate Built with Only the Three-Ring Unit. Journal of Physical Chemistry C, 2014, 118, 7458-7467.	3.1	10
12	Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 2014, 136, 2511-2519.	13.7	74
13	On the thermal behaviour of the crystalline hybrid organic–inorganic aluminosilicate ECS-3. Microporous and Mesoporous Materials, 2013, 172, 200-205.	4.4	10
14	Incorporation of germanium and boron in zeolite chabazite. Microporous and Mesoporous Materials, 2013, 168, 164-170.	4.4	6
15	A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 2012, 48, 7356.	4.1	33
16	Aluminum in mesoporous silica–alumina. Microporous and Mesoporous Materials, 2012, 158, 235-240.	4.4	17
17	Middle distillates from hydrocracking of FT waxes: Composition, characteristics and emission properties. Catalysis Today, 2010, 149, 40-46.	4.4	80
18	Unexpected Destructive Dealumination of Zeolite Beta by Silylation. Journal of Physical Chemistry C, 2010, 114, 8459-8468.	3.1	20

#	Article	IF	CITATIONS
19	A comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry approach for identification of C10 derivatives from decalin. Journal of Chromatography A, 2009, 1216, 2891-2899.	3.7	16
20	Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 2008, 113, 252-260.	4.4	39
21	On the crystal structure solution and characterization of ECS-2, a novel microporous hybrid organic-inorganic material. Studies in Surface Science and Catalysis, 2008, 174, 965-968.	1.5	2
22	Cross-Link Density of a Dispersed Rubber Measured by ¹²⁹ Xe Chemical Shift. Macromolecules, 2007, 40, 5787-5790.	4.8	26
23	Synthesis, characterization and crystal structure of EMS-2 – a novel microporous stannosilicate. Microporous and Mesoporous Materials, 2007, 101, 43-49.	4.4	6
24	Ti Coordination in Titanium Silicalite-1. Journal of the American Chemical Society, 2006, 128, 1450-1451.	13.7	61
25	Synthesis, characterization and adsorption capacities of microporous titanosilicate EMS-3. Microporous and Mesoporous Materials, 2006, 90, 153-161.	4.4	1
26	Ethane–silica hybrid material with ordered hexagonal mesoporous structure. Microporous and Mesoporous Materials, 2006, 87, 185-191.	4.4	25
27	Dynamic behaviour of azonia-spiro-alkanes within the MOR and MTW zeolite pore structures. Journal of Molecular Catalysis A, 2001, 166, 167-174.	4.8	5
28	Synthesis and characterization of borosilicates with the EUO framework topology. Microporous and Mesoporous Materials, 2001, 46, 191-201.	4.4	19
29	Structural characterization of as-synthesized B- and Ti-containing MFI-type molecular sieves. Microporous and Mesoporous Materials, 2000, 35-36, 387-403.	4.4	30
30	NMR Spectroscopy Applied to Zeolite Catalysis: Progress and Prospects. Comments on Inorganic Chemistry, 2000, 22, 31-73.	5.2	16
31	Characterization of γ-alumina and borated alumina catalysts. Applied Catalysis A: General, 1999, 185, 137-152.	4.3	48
32	Stability of Ti in MFI and Beta structures: a comparative study. Microporous and Mesoporous Materials, 1999, 30, 137-144.	4.4	94
33	Zeolite synthesis in the presence of azonia-spiro compounds as structure-directing agents. Microporous and Mesoporous Materials, 1998, 24, 199-211.	4.4	32
34	Interaction of phosphorus trichloride with zeolites. Zeolites, 1996, 16, 142-148.	0.5	17
35	In-Situ 13C NMR studies of 1-butene reactions on acid catalystswithout magic angle spinning. Studies in Surface Science and Catalysis, 1995, 94, 568-573.	1.5	3
36	Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 1995, 4, 221-230.	1.6	214

WALLACE O PARKER JR

#	Article	IF	CITATIONS
37	Spectroscopic studies of LaHY-FAU catalyst deactivation in the alkylation of isobutane with 1-butene. Applied Catalysis A: General, 1995, 124, 107-119.	4.3	65
38	Aluminum complexes in partially hydrolyzed aqueous A1C13 solutions used to prepare pillared clay catalysts. Applied Catalysis A: General, 1995, 121, L7-L11.	4.3	7
39	Ionic diffusivity and conductivity of plasticized polymer electrolytes: PMFG-NMR and complex impedance studies. Solid State Ionics, 1995, 82, 179-192.	2.7	62
40	Hydrolysis of sodium-2-acrylamido-2-methylpropanesulfonate copolymers at elevated temperature in aqueous solution via 13C n.m.r. spectroscopy. Polymer, 1993, 34, 4913-4918.	3.8	69
41	Study of micellar solutions and microemulsions of an alkyl oligoglucoside via NMR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 72, 275-284.	4.7	22
42	Acidic microemulsions of dodecane/p-dodecyl-benzenesulfonic acid/water/mineral acid part 1. HLB acidity and phase behavior. Colloids and Surfaces, 1990, 48, 13-20.	0.9	4
43	Electrochemical behavior of â€~costa-type' organocobalt coenzyme B12 models. Inorganica Chimica Acta, 1990, 168, 127-138.	2.4	11
44	Acidic microemulsions of dodecane/ p-dodecylbenzenesulfonic acid/water/HCl part 2. structure by proton NMR self-diffusion and relaxation studies. Colloids and Surfaces, 1990, 48, 21-28.	0.9	6
45	Electrochemical synthesis of Costa-type cobalt complexes. Organometallics, 1989, 8, 2377-2381.	2.3	17
46	Unusually long-lived cobalt(II) and cobalt(I) species identified during electrochemical reduction of neopentyl B12 costa-type models. Organometallics, 1988, 7, 1672-1674.	2.3	6
47	NMR studies of Costa-type organocobalt compounds. Structural characterization of several 1,5,6-trimethylbenzimidazole complexes. Inorganic Chemistry, 1988, 27, 2170-2180.	4.0	37
48	The principal components of synthetic vitamin B'12. Inorganic Chemistry, 1986, 25, 127-129.	4.0	7
49	Structures, hydrogen NMR spectra, and ligand-exchange properties of Costa-type organocobalt B12 models with P-donor ligands. Inorganic Chemistry, 1986, 25, 1303-1309.	4.0	21
50	Structures, NMR spectra, and ligand-exchange properties of Costa-type organocobalt B12 models with N-donor ligands. Inorganic Chemistry, 1986, 25, 3489-3497.	4.0	23
51	Comparative structural and ligand-exchange properties of organocobalt B12 models. Improved synthetic procedures for Costa models and the structures of two pyridine complexes with methyl and peopentyl ligands. Inorganic Chemistry, 1985, 24, 3908-3913	4.0	45