Li-Hong Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3804812/publications.pdf

Version: 2024-02-01

		196777	116156
75	4,503	29	66
papers	citations	h-index	g-index
77	77	77	8989
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics, 2022, 24, 9082-9117.	1.3	3
2	Controllable Synthesis of Atomically Thin 1Tâ€SnSe ₂ Flakes and Its Linear Second Harmonic Generation with Layer Thickness. Advanced Materials Interfaces, 2022, 9, .	1.9	3
3	Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory. Nano Research, 2022, 15, 5443-5449.	5.8	5
4	Dimensional crossover in self-intercalated antiferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:mrow></mml:math> nanoflakes. Physical Review B, 2022, 105, .	1.1	6
5	Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nature Communications, 2021, 12, 809.	5.8	196
6	Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on $Ir(111)$ substrate*. Chinese Physics B, 2021, 30, 048102.	0.7	7
7	One-dimensional weak antilocalization effect in 1T′-MoTe2 nanowires grown by chemical vapor deposition. Journal of Physics Condensed Matter, 2021, 33, 185701.	0.7	O
8	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chemistry of Materials, 2021, 33, 2506-2515.	3.2	10
9	Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 2021, 16, 882-887.	15.6	105
10	Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Materials Today, 2021, 45, 35-43.	8.3	29
11	A time-shared switching scheme designed for multi-probe scanning tunneling microscope. Review of Scientific Instruments, 2021, 92, 103702.	0.6	2
12	Wrinkle networks in exfoliated multilayer graphene and other layered materials. Carbon, 2020, 156, 24-30.	5.4	23
13	Insulating SiO ₂ under Centimeter-Scale, Single-Crystal Graphene Enables Electronic-Device Fabrication. Nano Letters, 2020, 20, 8584-8591.	4.5	19
14	Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy. Frontiers of Physics, 2020, 15, 1.	2.4	8
15	Ferroelectric-Gated InSe Photodetectors with High On/Off Ratios and Photoresponsivity. Nano Letters, 2020, 20, 6666-6673.	4.5	53
16	Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11, 2453.	5.8	394
17	Wrinkle-induced highly conductive channels in graphene on SiO ₂ /Si substrates. Nanoscale, 2020, 12, 12038-12045.	2.8	11
18	Thickness-Controlled Synthesis of $CoX < sub > 2 < / sub > (X = S, Se, and Te)$ Single Crystalline 2D Layers with Linear Magnetoresistance and High Conductivity. Chemistry of Materials, 2020, 32, 2321-2329.	3.2	35

#	Article	IF	CITATIONS
19	Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. Science China Materials, 2020, 63, 1548-1559.	3.5	40
20	Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature*. Chinese Physics Letters, 2020, 37, 017301.	1.3	6
21	Transition-Metal Substitution-Induced Lattice Strain and Electrical Polarity Reversal in Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 18650-18659.	4.0	20
22	InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Research, 2020, 13, 1127-1132.	5.8	48
23	Integrated ionic sieving channels from engineering ordered monolayer two-dimensional crystallite structures. Science Bulletin, 2020, 65, 1356-1362.	4.3	3
24	Scalable preparation of water-soluble ink of few-layered WSe ₂ nanosheets for large-area electronics*. Chinese Physics B, 2020, 29, 066802.	0.7	3
25	Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures*. Chinese Physics B, 2020, 29, 118501.	0.7	3
26	Simultaneous generation of direct- and indirect-gap photoluminescence in multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>l:mo:x/mr</td><td>ml:m21sub></td></mml:mn></mml:msub></mml:math>	l:m o :x/mr	ml:m21sub>
27	Tin diselenide van der Waals materials as new candidates for mid-infrared waveguide chips. Nanoscale, 2019, 11, 14113-14117.	2.8	4
28	Direct probing of imperfection-induced electrical degradation in millimeter-scale graphene on SiO ₂ substrates. 2D Materials, 2019, 6, 045033.	2.0	2
29	Substrate, a choice of engineering the pseudospin in graphene. 2D Materials, 2019, 6, 045050.	2.0	4
30	Observation of the Kondo Effect in Multilayer Single-Crystalline VTe ₂ Nanoplates. Nano Letters, 2019, 19, 8572-8580.	4.5	52
31	Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer. Nano Research, 2019, 12, 3095-3100.	5.8	15
32	Centimeter-scale, single-crystalline, AB-stacked bilayer graphene on insulating substrates. 2D Materials, 2019, 6, 045044.	2.0	11
33	Reversible Modification of Nitrogen-Doped Graphene Based on Se–N Dynamic Covalent Bonds for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 24360-24366.	4.0	13
34	Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)*. Chinese Physics B, 2019, 28, 056107.	0.7	9
35	Quasi-2D Transport and Weak Antilocalization Effect in Few-layered VSe ₂ . Nano Letters, 2019, 19, 4551-4559.	4.5	60
36	Charge-Transfer-Induced Photoluminescence Properties of WSe ₂ Monolayer–Bilayer Homojunction. ACS Applied Materials & Monolayer— Interfaces, 2019, 11, 20566-20573.	4.0	15

#	Article	IF	Citations
37	Annealing effects on the electrical and photoelectric performance of SnS2 field-effect transistor. Applied Surface Science, 2019, 484, 39-44.	3.1	11
38	Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride. Nanoscale, 2019, 11, 4226-4230.	2.8	18
39	One-step solution synthesis of a two-dimensional semiconducting covalent organometallic nanosheet <i>via</i> the condensation of boronic acid. RSC Advances, 2019, 9, 29327-29330.	1.7	2
40	Stable Silicene in Graphene/Silicene Van der Waals Heterostructures. Advanced Materials, 2018, 30, e1804650.	11.1	86
41	Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices. Chinese Physics B, 2018, 27, 077303.	0.7	4
42	Thick Layered Semiconductor Devices with Water Top-Gates: High On–Off Ratio Field-Effect Transistors and Aqueous Sensors. ACS Applied Materials & Interfaces, 2018, 10, 23198-23207.	4.0	14
43	Upgrade of a commercial four-probe scanning tunneling microscopy system. Review of Scientific Instruments, 2017, 88, 063704.	0.6	13
44	Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry. Chinese Physics B, 2017, 26, 066801.	0.7	14
45	From bidirectional rectifier to polarity-controllable transistor in black phosphorus by dual gate modulation. 2D Materials, 2017, 4, 025056.	2.0	7
46	Direct Four-Probe Measurement of Grain-Boundary Resistivity and Mobility in Millimeter-Sized Graphene. Nano Letters, 2017, 17, 5291-5296.	4.5	59
47	High-quality graphene grown on polycrystalline PtRh20 alloy foils by low pressure chemical vapor deposition and its electrical transport properties. Applied Physics Letters, 2016, 108, .	1.5	3
48	Few-layer SnSe2 transistors with high on/off ratios. Applied Physics Letters, 2016, 108, .	1.5	75
49	Epitaxy of Ultrathin SnSe Single Crystals on Polydimethylsiloxane: Inâ€Plane Electrical Anisotropy and Gateâ€Tunable Thermopower. Advanced Electronic Materials, 2016, 2, 1600292.	2.6	31
50	Introduction of Interfacial Charges to Black Phosphorus for a Family of Planar Devices. Nano Letters, 2016, 16, 6870-6878.	4.5	69
51	Atomic-Scale Imaging of Cation Ordering in Inverse Spinel Zn ₂ SnO ₄ Nanowires. Nano Letters, 2014, 14, 6505-6509.	4.5	19
52	Quantum Corrections Crossover and Ferromagnetism in Magnetic Topological Insulators. Scientific Reports, 2013, 3, 2391.	1.6	43
53	High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Applied Physics Letters, 2013, 103, .	1.5	50
54	A new approach for the preparation of variable valence rare earth alloys from nano rare earth oxides at a low temperature in molten salt. RSC Advances, 2012, 2, 1585-1591.	1.7	9

#	Article	IF	CITATIONS
55	Aerosol-assisted synthesis of monodisperse single-crystalline α-cristobalite nanospheres. Chemical Communications, 2012, 48, 1293-1295.	2.2	21
56	Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te. Scientific Reports, 2012, 2, 726.	1.6	172
57	Towards Textile Energy Storage from Cotton Tâ€6hirts. Advanced Materials, 2012, 24, 3246-3252.	11.1	473
58	Electron Beam Irradiation Stiffens Zinc Tin Oxide Nanowires. Nano Letters, 2011, 11, 4885-4889.	4.5	29
59	Synthesis, structural, optical and mechanical characterization of SrB2O4 nanorods. CrystEngComm, 2011, 13, 5858.	1.3	34
60	Flexible Zn ₂ SnO ₄ /MnO ₂ Core/Shell Nanocableâ^Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters, 2011, 11, 1215-1220.	4.5	807
61	Core-shell Fe ₃ O ₄ @SiO ₂ nanoparticles synthesized with well-dispersed hydrophilic Fe ₃ O ₄ seeds. Nanoscale, 2011, 3, 701-705.	2.8	284
62	Electric dipolar interaction assisted growth of single crystalline organic thin films. Chinese Physics B, 2010, 19, 067101.	0.7	2
63	Field emission properties of patterned boron nanocones. Nanotechnology, 2010, 21, 325705.	1.3	7
64	Catalyst-Free Synthesis and Structural and Mechanical Characterization of Single Crystalline Ca ₂ B ₂ O ₅ ·H ₂ O Nanobelts and Stacking Faulted Ca ₂ B _{B₂O₅Nanogrooves. Nano Letters, 2010, 10, 255-262.}	4.5	62
65	Patterned boron nanowires and field emission properties. Applied Physics Letters, 2009, 94, .	1.5	17
66	Fabrication of Vertically Aligned Singleâ€Crystalline Boron Nanowire Arrays and Investigation of Their Fieldâ€Emission Behavior. Advanced Materials, 2008, 20, 2609-2615.	11.1	99
67	Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochemistry Communications, 2008, 10, 625-629.	2.3	89
68	Large-Scale Fe ₃ O ₄ Nanoparticles Soluble in Water Synthesized by a Facile Method. Journal of Physical Chemistry C, 2008, 112, 11336-11339.	1.5	264
69	Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties. Chemistry of Materials, 2008, 20, 6939-6944.	3.2	181
70	Boron Carbide and Silicon Oxide Hetero-nanonecklaces via Temperature Modulation. Crystal Growth and Design, 2008, 8, 3160-3164.	1.4	15
71	Boron nanowires for flexible electronics. Applied Physics Letters, 2008, 93, .	1.5	33
72	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926.	1.2	15

#	Article	IF	CITATIONS
73	Large scale SiCâ^•SiOx nanocables: Synthesis, photoluminescence, and field emission properties. Journal of Applied Physics, 2007, 102, .	1.1	35
74	Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties. Advanced Materials, 2007, 19, 4480-4485.	11.1	80
75	Laser-induced phase conversion of n-type SnSe2 to p-type SnSe. Chinese Physics B, O, , .	0.7	3