Anett Georgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803947/publications.pdf Version: 2024-02-01

ANETT GEORGI

#	Article	IF	CITATIONS
1	Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites. Chemical Engineering Journal, 2022, 429, 132500.	12.7	40
2	Electro-assisted removal of polar and ionic organic compounds from water using activated carbon felts. Chemical Engineering Journal, 2022, 433, 133544.	12.7	11
3	Current and future trends in adsorption for environmental separations. Journal of Hazardous Materials, 2022, 433, 128776.	12.4	3
4	Efficient removal of trifluoroacetic acid from water using surface-modified activated carbon and electro-assisted desorption. Journal of Hazardous Materials, 2022, 436, 129051.	12.4	7
5	What is specific in adsorption of perfluoroalkyl acids on carbon materials?. Chemosphere, 2021, 273, 128520.	8.2	25
6	Mechanistic insights into fast adsorption of perfluoroalkyl substances on carbonate-layered double hydroxides. Journal of Hazardous Materials, 2021, 408, 124815.	12.4	18
7	Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. Environmental Science & Technology, 2021, 55, 614-622.	10.0	38
8	Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials. Chemical Engineering Journal, 2021, 416, 129070.	12.7	20
9	Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters. Science of the Total Environment, 2021, 794, 148508.	8.0	15
10	Understanding the effect of carbon surface chemistry on adsorption of perfluorinated alkyl substances. Chemical Engineering Journal, 2020, 381, 122689.	12.7	74
11	Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation. Applied Catalysis B: Environmental, 2020, 278, 119283.	20.2	34
12	Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time. Science of the Total Environment, 2019, 665, 235-245.	8.0	40
13	Suspension stability and mobility of Trap-Ox Fe-zeolites for in-situ nanoremediation. Journal of Colloid and Interface Science, 2017, 501, 311-320.	9.4	16
14	What Controls Selectivity of Hydroxyl Radicals in Aqueous Solution? Indications for a Cage Effect. Journal of Physical Chemistry A, 2017, 121, 7947-7955.	2.5	15
15	Zeolites as recyclable adsorbents/catalysts for biogas upgrading: Removal of octamethylcyclotetrasiloxane. Chemical Engineering Journal, 2017, 307, 820-827.	12.7	33
16	Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches. Science of the Total Environment, 2016, 550, 820-826.	8.0	8
17	Accelerated Catalytic Fenton Reaction with Traces of Iron: An Fe–Pd-Multicatalysis Approach. Environmental Science & Technology, 2016, 50, 5882-5891.	10.0	81
18	Colloidal activated carbon for in-situ groundwater remediation — Transport characteristics and adsorption of organic compounds in water-saturated sediment columns. Journal of Contaminant Hydrology, 2015, 179, 76-88.	3.3	49

ANETT GEORGI

#	Article	IF	CITATIONS
19	A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Journal of Contaminant Hydrology, 2015, 181, 59-68.	3.3	56
20	Comments on "Reuse of Semiconductor Wastewater Using Reverse Osmosis and Metal-Immobilized Catalyst-Based Advanced Oxidation Process― Industrial & Engineering Chemistry Research, 2014, 53, 18585-18586.	3.7	2
21	LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal, 2014, 239, 322-331.	12.7	151
22	Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Separation and Purification Technology, 2014, 127, 1-9.	7.9	48
23	Carbo-Iron - ein maßgeschneidertes Reagenz zur In-situ-Grundwassersanierung. Chemie-Ingenieur-Technik, 2013, 85, 1302-1311.	0.8	6
24	Hydrophobic Fe-Zeolites for Removal of MTBE from Water by Combination of Adsorption and Oxidation. Environmental Science & amp; Technology, 2013, 47, 2353-2360.	10.0	96
25	Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 2012, 241-242, 433-440.	12.4	228
26	Critical Evaluation of the 2D-CSIA Scheme for Distinguishing Fuel Oxygenate Degradation Reaction Mechanisms. Environmental Science & amp; Technology, 2012, 46, 4757-4766.	10.0	36
27	Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Water Research, 2012, 46, 3817-3826.	11.3	123
28	Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental, 2012, 125, 51-58.	20.2	141
29	Stabilization of potassium permanganate particles with manganese dioxide. Chemosphere, 2012, 86, 783-788.	8.2	8
30	Chlorophenol degradation using a one-pot reduction–oxidation process. Applied Catalysis B: Environmental, 2011, 104, 161-168.	20.2	20
31	Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Applied Catalysis A: General, 2011, 398, 44-53.	4.3	128
32	Fe-Zeolites as Catalysts for Wet Peroxide Oxidation of Organic Groundwater Contaminants: Mechanistic Studies and Applicability Tests. Separation Science and Technology, 2010, 45, 1579-1586.	2.5	16
33	Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Applied Catalysis B: Environmental, 2009, 89, 356-364.	20.2	85
34	Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. Part II: Hydrolysis reactions. Chemosphere, 2008, 71, 1452-1460.	8.2	19
35	Influence of Sorption to Dissolved Humic Substances on Transformation Reactions of Hydrophobic Organic Compounds in Water. I. Chlorination of PAHs. Environmental Science & Technology, 2007, 41, 7003-7009.	10.0	40
36	Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 2007, 72, 26-36.	20.2	235

ANETT GEORGI

#	Article	IF	CITATIONS
37	Interaction of adsorption and catalytic reactions in water decontamination processes. Applied Catalysis B: Environmental, 2005, 58, 9-18.	20.2	247
38	Alternative sources of hydrogen for hydrodechlorination of chlorinated organic compounds in water on Pd catalysts. Applied Catalysis A: General, 2004, 271, 119-128.	4.3	91
39	Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 2. Solid-Phase Microextraction (SPME) and Fluorescence Quenching Technique (FQT) as Analytical Methods. Environmental Science & Technology, 2002, 36, 4403-4409.	10.0	38
40	Validation of a modified Floryâ€Huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances. Environmental Toxicology and Chemistry, 2002, 21, 1766-1774.	4.3	17
41	Validation of a modified flory-huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances. Environmental Toxicology and Chemistry, 2002, 21, 1766-74.	4.3	11
42	Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 1. Structureâ^'Property Correlation. Environmental Science & Technology, 2001, 35, 2536-2542.	10.0	94
43	Application of SPME to study sorption phenomena on dissolved humic organic matter. RSC Chromatography Monographs, 0, , 111-128.	0.1	8