
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803503/publications.pdf Version: 2024-02-01

ΥΠΝΗΔΝ SUN

#	Article	IF	CITATIONS
1	Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9, 1019-1024.	6.6	757
2	Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature, 2016, 538, 84-87.	13.7	647
3	A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science and Technology, 2017, 7, 4580-4598.	2.1	385
4	Direct Production of Lower Olefins from CO ₂ Conversion via Bifunctional Catalysis. ACS Catalysis, 2018, 8, 571-578.	5.5	382
5	Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298, 51-60.	3.1	322
6	A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147, 133-138.	2.2	311
7	Metalâ€Free Nitrogenâ€Doped Mesoporous Carbon for Electroreduction of CO ₂ to Ethanol. Angewandte Chemie - International Edition, 2017, 56, 10840-10844.	7.2	289
8	Exclusive Formation of Formic Acid from CO ₂ Electroreduction by a Tunable Pdâ€&n Alloy. Angewandte Chemie - International Edition, 2017, 56, 12219-12223.	7.2	264
9	C(sp ³)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 2020, 369, 92-96.	6.0	263
10	Rationally designed indium oxide catalysts for CO ₂ hydrogenation to methanol with high activity and selectivity. Science Advances, 2020, 6, eaaz2060.	4.7	211
11	Novel Heterogeneous Catalysts for CO ₂ Hydrogenation to Liquid Fuels. ACS Central Science, 2020, 6, 1657-1670.	5.3	182
12	Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catalysis, 2019, 9, 3866-3876.	5.5	177
13	Singleâ€Crystalline Dodecahedral and Octodecahedralαâ€Fe ₂ O ₃ Particles Synthesized by a Fluoride Anion–Assisted Hydrothermal Method. Advanced Functional Materials, 2010, 20, 3987-3996.	7.8	176
14	Controlled Synthesis of Nâ€Doped Carbon Nanospheres with Tailored Mesopores through Selfâ€Assembly of Colloidal Silica. Angewandte Chemie - International Edition, 2015, 54, 15191-15196.	7.2	171
15	Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catalysis, 2017, 7, 3622-3631.	5.5	157
16	Selfâ€Assembly of Thiourea rosslinked Graphene Oxide Framework Membranes toward Separation of Small Molecules. Advanced Materials, 2018, 30, e1705775.	11.1	154
17	pH-Responsive Drug Release from Polymer-Coated Mesoporous Silica Spheres. Journal of Physical Chemistry C, 2009, 113, 12753-12758.	1.5	124
18	Disulfideâ€Catalyzed Visibleâ€Lightâ€Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Chargeâ€Transfer Complex. Angewandte Chemie - International Edition, 2017, 56, 832-836.	7.2	119

#	Article	IF	CITATIONS
19	CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: a comparative study. Catalysis Science and Technology, 2013, 3, 1591.	2.1	118
20	Methanol synthesis from CO2 hydrogenation over La–M–Cu–Zn–O (MÂ=ÂY, Ce, Mg, Zr) catalysts derive from perovskite-type precursors. Journal of Power Sources, 2014, 251, 113-121.	d 4.0	115
21	Effect of pore structure on Ni catalyst for CO2 reforming of CH4. Energy and Environmental Science, 2010, 3, 366.	15.6	114
22	Synthesis of dimethyl carbonate by transesterification over CaO/carbon composites. Green Chemistry, 2003, 5, 343.	4.6	112
23	Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chinese Journal of Catalysis, 2013, 34, 116-129.	6.9	111
24	Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catalysis Today, 2017, 281, 327-336.	2.2	111
25	Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8, 825.	5.8	110
26	Selective Transformation of CO ₂ and H ₂ into Lower Olefins over In ₂ O ₃ â€ZnZrO _{<i>x</i>} /SAPOâ€34 Bifunctional Catalysts. ChemSusChem, 2019, 12, 3582-3591.	3.6	103
27	Yttrium oxide modified Cu/ZnO/Al ₂ O ₃ catalysts via hydrotalcite-like precursors for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2015, 5, 4365-4377.	2.1	99
28	Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresource Technology, 2016, 205, 264-268.	4.8	96
29	Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catalysis Science and Technology, 2012, 2, 1447.	2.1	95
30	Catalytic performance of spray-dried Cu/ZnO/Al 2 O 3 /ZrO 2 catalysts for slurry methanol synthesis from CO 2 hydrogenation. Journal of CO2 Utilization, 2016, 15, 72-82.	3.3	94
31	Exclusive Formation of Formic Acid from CO ₂ Electroreduction by a Tunable Pdâ€&n Alloy. Angewandte Chemie, 2017, 129, 12387-12391.	1.6	92
32	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie - International Edition, 2019, 58, 4627-4631.	7.2	92
33	Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts. Applied Catalysis B: Environmental, 2020, 264, 118500.	10.8	90
34	0D–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1605646.	11.1	89
35	Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahighâ€Rate Zinc–Air Batteries. Advanced Functional Materials, 2017, 27, 1700041.	7.8	85
36	Single atomic Ag enhances the bifunctional activity and cycling stability of MnO2. Chemical Engineering Journal, 2019, 366, 631-638.	6.6	83

#	Article	IF	CITATIONS
37	Synthesis of Dimethyl Carbonate from Urea and Methanol over ZnO. Industrial & Engineering Chemistry Research, 2005, 44, 7596-7599.	1.8	81
38	Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co ₂ C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catalysis, 2017, 7, 8023-8032.	5.5	79
39	Carbonâ€based adsorbents for postâ€combustion capture: a review. , 2018, 8, 11-36.		77
40	Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catalysis Today, 2018, 311, 8-22.	2.2	77
41	Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresource Technology, 2016, 211, 1-5.	4.8	74
42	A Nickelâ€Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane. ChemCatChem, 2018, 10, 2078-2086.	1.8	74
43	The Effect of Nitrogen on the Autoreduction of Cobalt Nanoparticles Supported on Nitrogenâ€Doped Ordered Mesoporous Carbon for the Fischer–Tropsch Synthesis. ChemCatChem, 2014, 6, 319-327.	1.8	69
44	The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of Ni–CaO–ZrO ₂ Catalysts in CH ₄ Dry Reforming. ChemCatChem, 2014, 6, 640-648.	1.8	69
45	Metalâ€Free Nitrogenâ€Doped Mesoporous Carbon for Electroreduction of CO ₂ to Ethanol. Angewandte Chemie, 2017, 129, 10980-10984.	1.6	69
46	Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst. Chemistry - A European Journal, 2019, 25, 3105-3111.	1.7	69
47	Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis. Journal of Molecular Catalysis A, 2013, 378, 319-325.	4.8	68
48	Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 23366-23377.	5.2	68
49	Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2016, 16, 32-41.	3.3	66
50	Exploring the Effect of Co ₃ O ₄ Nanocatalysts with Different Dimensional Architectures on Methane Combustion. ChemCatChem, 2016, 8, 540-545.	1.8	66
51	High-Yield Synthesis of Dimethyl Carbonate from Urea and Methanol Using a Catalytic Distillation Process. Industrial & Engineering Chemistry Research, 2007, 46, 2683-2687.	1.8	65
52	Highly stable mesoporous NiO–Y2O3–Al2O3 catalysts for CO2 reforming of methane: effect of Ni embedding and Y2O3 promotion. Catalysis Science and Technology, 2016, 6, 449-459.	2.1	65
53	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie, 2019, 131, 4675-4679.	1.6	65
54	Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer–Tropsch catalysts. Green Chemistry, 2007, 9, 611-615.	4.6	64

#	Article	IF	CITATIONS
55	Fischer–Tropsch Synthesis to Olefins: Catalytic Performance and Structure Evolution of Co ₂ C-Based Catalysts under a CO ₂ Environment. ACS Catalysis, 2019, 9, 9554-9567.	5.5	64
56	Comparative techno-economic study of solar energy integrated hydrogen supply pathways for hydrogen refueling stations in China. Energy Conversion and Management, 2020, 223, 113240.	4.4	64
57	Coke suppression in MTO over hierarchical SAPO-34 zeolites. RSC Advances, 2016, 6, 28787-28791.	1.7	63
58	Grafting of Amines on Ethanol-Extracted SBA-15 for CO2 Adsorption. Materials, 2013, 6, 981-999.	1.3	62
59	Advances in direct production of value-added chemicals via syngas conversion. Science China Chemistry, 2017, 60, 887-903.	4.2	62
60	Adsorption-intensified degradation of organic pollutants over bifunctional α-Fe@carbon nanofibres. Environmental Science: Nano, 2017, 4, 302-306.	2.2	61
61	Ni/ADM: a high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols. Topics in Catalysis, 2005, 32, 233-239.	1.3	60
62	Facile synthesis of catalytically active CeO ₂ for soot combustion. Catalysis Science and Technology, 2015, 5, 1941-1952.	2.1	60
63	La ₂ O ₃ catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane. RSC Advances, 2016, 6, 34872-34876.	1.7	60
64	Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas. Catalysis Today, 2016, 270, 101-107.	2.2	58
65	Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chemical Engineering Science, 2019, 195, 250-261.	1.9	58
66	CaO–ZrO2 Solid Solution: A Highly Stable Catalyst for the Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol. Catalysis Letters, 2005, 105, 253-257.	1.4	57
67	Direct synthesis of long-chain alcohols from syngas over CoMn catalysts. Applied Catalysis A: General, 2018, 549, 179-187.	2.2	57
68	Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 293, 120207.	10.8	57
69	The intrinsic effects of shell thickness on the Fischer–Tropsch synthesis over core–shell structured catalysts. Catalysis Science and Technology, 2013, 3, 3250.	2.1	56
70	Efficient dehydration of the organic solvents through graphene oxide (GO)/ceramic composite membranes. RSC Advances, 2014, 4, 52012-52015.	1.7	54
71	Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts. Journal of CO2 Utilization, 2018, 26, 642-651.	3.3	54
72	Promotion of CO ₂ Electrochemical Reduction via Cu Nanodendrites. ACS Applied Materials & Interfaces, 2020, 12, 11562-11569.	4.0	54

#	Article	IF	CITATIONS
73	Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Accounts of Chemical Research, 2021, 54, 1961-1971.	7.6	54
74	Design of a carbon-resistant Ni@S-2 reforming catalyst: Controllable Ni nanoparticles sandwiched in a peasecod-like structure. Applied Catalysis B: Environmental, 2021, 282, 119546.	10.8	53
75	Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catalysis Communications, 2013, 40, 154-157.	1.6	52
76	Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites. Microporous and Mesoporous Materials, 2016, 231, 110-116.	2.2	52
77	Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas. Journal of Catalysis, 2018, 366, 289-299.	3.1	52
78	A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols. Topics in Catalysis, 2021, 64, 371-394.	1.3	52
79	Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis. Bioresource Technology, 2017, 238, 109-115.	4.8	51
80	n-Dodecane Hydroconversion over Ni/AlMCM-41 Catalysts. Catalysis Letters, 2004, 93, 235-242.	1.4	49
81	Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO ₂ adsorption. RSC Advances, 2015, 5, 27901-27911.	1.7	49
82	Constructing Hierarchically Hollow Core–Shell MnO ₂ /C Hybrid Spheres for Highâ€Performance Lithium Storage. Small, 2016, 12, 3914-3919.	5.2	48
83	Studies of Cobalt Particle Size Effects on Fischer–Tropsch Synthesis over Core–Shell‧tructured Catalysts. ChemCatChem, 2013, 5, 3794-3801.	1.8	46
84	Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method. Journal of Materials Chemistry A, 2015, 3, 23990-23999.	5.2	46
85	Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria. Algal Research, 2018, 31, 31-39.	2.4	46
86	Constructing Synergistic Znâ€N ₄ and Feâ€N ₄ O Dualâ€6ites from the COF@MOF Derived Hollow Carbon for Oxygen Reduction Reaction. Small Structures, 2022, 3, .	6.9	46
87	Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. Journal of Hazardous Materials, 2019, 377, 341-348.	6.5	45
88	Particle Size Effects of Cobalt Carbide for Fischer–Tropsch to Olefins. ACS Catalysis, 2019, 9, 798-809.	5.5	45
89	Significance of Surface Trivalent Manganese in the Electrocatalytic Activity of Water Oxidation in Undoped and Doped MnO ₂ Nanowires. ChemCatChem, 2015, 7, 1848-1856.	1.8	44
90	Preparation and CO 2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. Journal of CO2 Utilization, 2017, 17, 263-272.	3.3	44

#	Article	IF	CITATIONS
91	Investigation of the role of Nb on Pdâ^'Zrâ^'Zn catalyst in methanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 11717-11733.	3.8	44
92	Enhanced Ethanol Production from CO ₂ Electroreduction at Micropores in Nitrogenâ€Đoped Mesoporous Carbon. ChemSusChem, 2020, 13, 293-297.	3.6	44
93	Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nature Communications, 2022, 13, .	5.8	43
94	Super Hydrophobic Mesoporous Silica with Anchored Methyl Groups on the Surface by a One-Step Synthesis without Surfactant Template. Journal of Physical Chemistry C, 2007, 111, 999-1004.	1.5	42
95	Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chemistry, 2020, 22, 7333-7336.	4.6	42
96	Surface-modified spherical activated carbon materials for pre-combustion carbon dioxide capture. RSC Advances, 2015, 5, 33681-33690.	1.7	41
97	Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285, 119840.	10.8	41
98	Modified Zinc Oxide for the Direct Synthesis of Propylene Carbonate from Propylene Glycol and Carbon dioxide. Catalysis Letters, 2007, 118, 290-294.	1.4	40
99	Synthesis of higher alcohols over highly dispersed Cu–Fe based catalysts derived from layered double hydroxides. Journal of Colloid and Interface Science, 2016, 470, 162-171.	5.0	40
100	Catalyst Design for Selective Hydrodeoxygenation of Glycerol to 1,3-Propanediol. ACS Catalysis, 2020, 10, 15217-15226.	5.5	39
101	Visualization of the Formation and 3D Porous Structure of Ag Doped MnO ₂ Aerogel Monoliths with High Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 6277-6287.	3.2	38
102	Surface-modified Improvement in Catalytic Performance of Cr(salen) Complexes Immobilized on MCM-41 in Solvent-Free Selective Oxidation of Benzyl Alcohol. Catalysis Letters, 2007, 119, 87-94.	1.4	37
103	A Simple Non-Aqueous Route to Anatase TiO2. European Journal of Inorganic Chemistry, 2008, 2008, 1236-1240.	1.0	37
104	Au@PdO _x with a PdO _x -rich shell and Au-rich core embedded in Co ₃ O ₄ nanorods for catalytic combustion of methane. Nanoscale, 2017, 9, 2123-2128.	2.8	37
105	Nature inspired fractal tree-like photobioreactor via 3D printing for CO2 capture by microaglae. Chemical Engineering Science, 2019, 193, 6-14.	1.9	37
106	Optimization of a Decatungstate-Catalyzed C(sp ³)–H Alkylation Using a Continuous Oscillatory Millistructured Photoreactor. Organic Process Research and Development, 2020, 24, 2356-2361.	1.3	37
107	Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance and mechanistic insights. Sustainable Energy and Fuels, 2019, 3, 1163-1171.	2.5	36
108	A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition. Applied Catalysis B: Environmental, 2021, 299, 120648.	10.8	36

#	Article	IF	CITATIONS
109	Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catalysis, 2022, 12, 4382-4393.	5.5	36
110	The oxidizing pretreatment-mediated autoreduction behaviour of cobalt nanoparticles supported on ordered mesoporous carbon for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2014, 4, 717.	2.1	35
111	Enhanced thermochemical CO2 splitting over Mg- and Ca-doped ceria/zirconia solid solutions. RSC Advances, 2014, 4, 5583.	1.7	35
112	Comparative environmental and economic performance of solar energy integrated methanol production systems in China. Energy Conversion and Management, 2019, 187, 63-75.	4.4	35
113	Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene. Green Chemistry, 2021, 23, 4753-4761.	4.6	35
114	Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates. Catalysis Letters, 2006, 112, 187-191.	1.4	34
115	Fast capture of methyl-dyes over hierarchical amino-Co _{0.3} Ni _{0.7} Fe ₂ O ₄ @SiO ₂ nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 22000-22004.	5.2	34
116	Dually confined Ni nanoparticles by room-temperature degradation of AlN for dry reforming of methane. Applied Catalysis B: Environmental, 2020, 277, 118921.	10.8	34
117	Sol?Gel Synthesis of Methyl Modified Optical Silica Coatings and Gels from DDS and TEOS. Journal of Sol-Gel Science and Technology, 2005, 33, 19-24.	1.1	33
118	Enhanced Interactions between Gold and MnO ₂ Nanowires for Water Oxidation: A Comparison of Different Chemical and Physical Preparation Methods. ACS Sustainable Chemistry and Engineering, 2015, 3, 2049-2057.	3.2	33
119	Performance of the La–Mn–Zn–Cu–O Based Perovskite Precursors for Methanol Synthesis from CO2 Hydrogenation. Catalysis Letters, 2015, 145, 1177-1185.	1.4	33
120	Ultralow Pt Catalyst for Formaldehyde Removal: The Determinant Role of Support. IScience, 2018, 9, 487-501.	1.9	33
121	Cu/Mn/ZrO2 catalyst for alcohol synthesis by Fischer-Tropsch modified elements. Reaction Kinetics and Catalysis Letters, 2002, 75, 297-304.	0.6	32
122	Standing Carbonâ€Supported Trace Levels of Metal Derived from Covalent Organic Framework for Electrocatalysis. Small, 2019, 15, e1905363.	5.2	32
123	CO2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions. RSC Advances, 2013, 3, 18878.	1.7	31
124	Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas. RSC Advances, 2015, 5, 51868-51874.	1.7	31
125	Effect of Sodium on the Structureâ€Performance Relationship of Co/ <scp>SiO₂</scp> for Fischerâ€Tropsch Synthesis. Chinese Journal of Chemistry, 2017, 35, 918-926.	2.6	31
126	Effect of Reaction Pressures on Structure–Performance of Co ₂ C-Based Catalyst for Syngas Conversion. Industrial & Engineering Chemistry Research, 2018, 57, 15647-15653.	1.8	31

#	Article	IF	CITATIONS
127	Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production. Energy Conversion and Management, 2020, 205, 112348.	4.4	31
128	Carbon Dioxide Capture by MgO-modified MCM-41 Materials. Adsorption Science and Technology, 2009, 27, 593-601.	1.5	30
129	Influence of element doping on La–Mn–Cu–O based perovskite precursors for methanol synthesis from CO ₂ /H ₂ . RSC Advances, 2014, 4, 48888-48896.	1.7	30
130	Chromium-based metal–organic framework/mesoporous carbon composite: synthesis, characterization and CO2 adsorption. Adsorption, 2015, 21, 77-86.	1.4	30
131	Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion. RSC Advances, 2016, 6, 15816-15820.	1.7	30
132	Gammaâ€Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie - International Edition, 2020, 59, 11325-11329.	7.2	30
133	Stable nanocrystalline zirconia sols prepared by a novel method: Alcohol thermal synthesis. Journal of Materials Research, 2000, 15, 402-406.	1.2	29
134	Synthesis of Higher Alcohols from Syngas over Ultrafine Mo—Co—K Catalysts. Catalysis Letters, 2001, 76, 249-253.	1.4	29
135	Epoxidation of Styrene with H2O2 Catalyzed by Alanine–Salicylaldehyde Schiff Base Chromium (III) Complexes Immobilized on Mesoporous Materials. Catalysis Letters, 2010, 136, 96-105.	1.4	29
136	Fischer–Tropsch Synthesis over Ordered Mesoporous Carbon Supported Cobalt Catalysts: The Role of Amount of Carbon Precursor in Catalytic Performance. Catalysis Letters, 2012, 142, 195-204.	1.4	29
137	Solventâ€Free Synthesis of <i>c</i> â€Axis Oriented ZSMâ€5 Crystals with Enhanced Methanol to Gasoline Catalytic Activity. ChemCatChem, 2016, 8, 3317-3322.	1.8	29
138	Disulfideâ€Catalyzed Visibleâ€Lightâ€Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Chargeâ€Transfer Complex. Angewandte Chemie, 2017, 129, 850-854.	1.6	29
139	Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas. Applied Catalysis A: General, 2020, 602, 117704.	2.2	29
140	Enhanced <i>n</i> -dodecane hydroisomerization performance by tailoring acid sites on bifunctional Pt/ZSM-22 <i>via</i> alkaline treatment. New Journal of Chemistry, 2018, 42, 111-117.	1.4	28
141	Effect of the support on cobalt carbide catalysts for sustainable production of olefins from syngas. Chinese Journal of Catalysis, 2018, 39, 1869-1880.	6.9	28
142	Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
143	CO ₂ Hydrogenation to Methanol over PdZnZr Solid Solution: Effects of the PdZn Alloy and Oxygen Vacancy. ACS Applied Energy Materials, 2021, 4, 9258-9266.	2.5	26
144	CO2 sorption in wet ordered mesoporous silica kit-6: effects of water content and mechanism on enhanced sorption capacity. Adsorption, 2014, 20, 883-888.	1.4	25

#	Article	IF	CITATIONS
145	Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development. Applied Energy, 2015, 158, 619-630.	5.1	25
146	Melting-assisted solvent-free synthesis of hierarchical SAPO-34 with enhanced methanol to olefins (MTO) performance. Catalysis Science and Technology, 2018, 8, 423-427.	2.1	25
147	Advances in Clean Fuel Ethanol Production from Electro-, Photo- and Photoelectro-Catalytic CO2 Reduction. Catalysts, 2020, 10, 1287.	1.6	25
148	Copper hollow fiber electrode for efficient CO2 electroreduction. Journal of Power Sources, 2021, 495, 229814.	4.0	25
149	Maximizing the synergistic effect between PtO and Ptδ+ in a confined Pt-based catalyst for durable hydrogen production. Applied Catalysis B: Environmental, 2022, 316, 121669.	10.8	25
150	Studies of Fe-doped SiO2/TiO2 composite nanoparticles prepared by sol-gel-hydrothermal method. Journal of Materials Science, 2005, 40, 3939-3943.	1.7	24
151	Ammonia Catalyzed Hydrolysis-Condensation Kinetics of Tetraethoxysilane/Dimethyldiethoxysilane Mixtures Studied by 29 Si NMR and SAXS. Journal of Solution Chemistry, 2007, 36, 327-344.	0.6	24
152	Rapid capture of Ponceau S via a hierarchical organic–inorganic hybrid nanofibrous membrane. Journal of Materials Chemistry A, 2016, 4, 5423-5427.	5.2	24
153	CO ₂ Chemisorption and Its Effect on Methane Activation in La ₂ O ₃ -Catalyzed Oxidative Coupling of Methane. Journal of Physical Chemistry C, 2016, 120, 2737-2746.	1.5	24
154	Formic Acidâ€Induced Controlledâ€Release Hydrolysis of Microalgae (<i>Scenedesmus</i>) to Lactic Acid over Snâ€Beta Catalyst. ChemSusChem, 2018, 11, 2492-2496.	3.6	24
155	Î ³ -Valerolactone-introduced controlled-isomerization of glucose for lactic acid production over an Sn-Beta catalyst. Green Chemistry, 2021, 23, 2634-2639.	4.6	24
156	Evoked Methane Photocatalytic Conversion to C2 Oxygenates over Ceria with Oxygen Vacancy. Catalysts, 2020, 10, 196.	1.6	24
157	Controlled Preparation of Co3O4@porous-SiO2 Nanocomposites for Fischer–Tropsch Synthesis. Catalysis Letters, 2014, 144, 516-523.	1.4	23
158	Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 319-334.	0.8	23
159	Elucidation of reaction network of higher alcohol synthesis over modified FT catalysts by probe molecule experiments. Catalysis Science and Technology, 2015, 5, 4224-4232.	2.1	23
160	Ultra-tiny Co(OH) ₂ particles supported on graphene oxide for highly efficient electrocatalytic water oxidation. RSC Advances, 2015, 5, 39075-39079.	1.7	23
161	Designing axial growth of Co–Ni bimetallic nanowires with hexagon-like caps and their catalytic hydrogenation for nitrobenzene. Nanoscale, 2016, 8, 3949-3953.	2.8	23
162	Morphologyâ€Controlled Synthesis of Hâ€ŧype MFI Zeolites with Unique Stacked Structures through a Oneâ€Pot Solventâ€Free Strategy. ChemSusChem, 2019, 12, 3871-3877.	3.6	23

#	Article	IF	CITATIONS
163	Tuning the Facet Proportion of Co ₂ C Nanoprisms for Fischerâ€Tropsch Synthesis to Olefins. ChemCatChem, 2020, 12, 1630-1638.	1.8	23
164	Role of La2O3 in Pd-Supported Catalysts for Methanol Decomposition. Catalysis Letters, 2002, 84, 123-129.	1.4	22
165	Tuning pore size and hydrophobicity of macroporous hybrid silica films with high optical transmittance by a non-template route. Journal of Materials Chemistry, 2008, 18, 5557.	6.7	22
166	Phase transition of silica in the TMB–P123–H2O–TEOS quadru-component system: A feasible route to different mesostructured materials. Journal of Colloid and Interface Science, 2014, 433, 176-182.	5.0	22
167	Microwave-assisted in-situ elimination of primary tars over biochar: Low temperature behaviours and mechanistic insights. Bioresource Technology, 2018, 267, 333-340.	4.8	22
168	Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods. Applied Catalysis A: General, 2020, 592, 117414.	2.2	22
169	Induced CO ₂ Electroreduction to Formic Acid on Metalâ^'Organic Frameworks via Node Doping. ChemSusChem, 2020, 13, 4035-4040.	3.6	22
170	Efficient and Stable Co/β-Mo ₂ C Catalyst for Hydroformylation. ACS Catalysis, 2021, 11, 14319-14327.	5.5	22
171	Influence of promoter on catalytic properties of Cu-Mn-Fe/ZrO2catalysts for alcohols synthesis. Reaction Kinetics and Catalysis Letters, 2004, 81, 91-98.	0.6	21
172	Preparation and Properties of Octadecahedral αâ€Fe ₂ O ₃ Nanoparticles Enclosed by {104} and {112} Facets. European Journal of Inorganic Chemistry, 2012, 2012, 4076-4081.	1.0	21
173	Recent advances in the catalytic conversion of CO2 to value added compunds. Science China Chemistry, 2015, 58, 79-92.	4.2	21
174	Fast synthesis of submicron all-silica CHA zeolite particles using a seeding method. RSC Advances, 2015, 5, 27087-27090.	1.7	21
175	Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity. Applied Biochemistry and Biotechnology, 2017, 181, 340-349.	1.4	21
176	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	4.6	21
177	Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation(China), 2021, 2, 100170.	5.2	21
178	Effect of boric acid on the stabilization of poly(acrylonitrile-co-itaconic acid). Journal of Polymer Research, 2007, 14, 497-503.	1.2	20
179	Kinetics studies of dimethyl carbonate synthesis from urea and methanol over ZnO catalyst. Korean Journal of Chemical Engineering, 2010, 27, 1744-1749.	1.2	20
180	Catalytic Mechanisms of Methanol Oxidation to Methyl Formate on Vanadia–Titania and Vanadia–Titania–Sulfate Catalysts. Journal of Physical Chemistry C, 2016, 120, 29290-29301.	1.5	20

#	Article	IF	CITATIONS
181	Effects of alkali metal promoters on the structure–performance relationship of CoMn catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2020, 10, 1816-1826.	2.1	20
182	Direct Conversion of Syngas to Higher Alcohols over Multifunctional Catalyst: The Role of Copper-Based Component and Catalytic Mechanism. Journal of Physical Chemistry C, 2021, 125, 6137-6146.	1.5	20
183	Ultralow Rh Bimetallic Catalysts with High Catalytic Activity for the Hydrogenation of <i>N</i> -Ethylcarbazole. ACS Sustainable Chemistry and Engineering, 2021, 9, 5260-5267.	3.2	20
184	A DFT-based microkinetic study on methanol synthesis from CO ₂ hydrogenation over the In ₂ O ₃ catalyst. Physical Chemistry Chemical Physics, 2021, 23, 1888-1895.	1.3	20
185	Structure Control of SiO2 Sol-Gels via Addition of PEG. Studies in Surface Science and Catalysis, 1998, 118, 617-624.	1.5	19
186	Effect of pore geometries on the catalytic properties of NiO–Al ₂ O ₃ catalysts in CO ₂ reforming of methane. RSC Advances, 2015, 5, 21090-21098.	1.7	19
187	Process intensification of honeycomb fractal micro-reactor for the direct production of lower olefins from syngas. Chemical Engineering Journal, 2018, 351, 12-21.	6.6	19
188	Solvent-Free Synthesis of Mg-Incorporated Nanocrystalline SAPO-34 Zeolites via Natural Clay for Chloromethane-to-Olefin Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 4185-4193.	3.2	19
189	IrFe/ZSM-5 Synergistic Catalyst for Selective Oxidation of Methane to Formic Acid. Energy & Fuels, 2021, 35, 4418-4427.	2.5	19
190	Esterification of Salicylic Acid with Dimethyl Carbonate over Mesoporous Aluminosilicate. Industrial & Engineering Chemistry Research, 2009, 48, 3685-3691.	1.8	18
191	Morphology evolution of α-Fe2O3 nanoparticles: the effect of dihydrogen phosphate anions. CrystEngComm, 2011, 13, 7293.	1.3	18
192	A facile solvent-free route to synthesize ordered mesoporous carbons. RSC Advances, 2014, 4, 32113-32116.	1.7	18
193	Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas. ACS Applied Materials & Interfaces, 2018, 10, 3495-3505.	4.0	18
194	Highly Selective Photocatalytic Aerobic Oxidation of Methane to Oxygenates with Water over Wâ€doped TiO ₂ . ChemSusChem, 2022, 15, .	3.6	18
195	Synthesis and characterization of ultralong lanthanum hydroxide nanorods via solvothermal method. Journal of Materials Science, 2007, 42, 1397-1400.	1.7	17
196	Preparation and characterization of <scp>S</scp> ilicaliteâ€1/ <scp>PDMS</scp> surface sieving pervaporation membrane for separation of ethanol/water mixture. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
197	A novel Cu–Mn/Ca–Zr catalyst for the synthesis of methyl formate from syngas. RSC Advances, 2015, 5, 67630-67637.	1.7	17
198	Dual-Role Membrane as NH ₃ Permselective Reactor and Azeotrope Separator in Urea Alcoholysis. ACS Central Science, 2019, 5, 1834-1843.	5.3	17

#	Article	IF	CITATIONS
199	Syngas Conversion to Aromatics over the Co ₂ C-Based Catalyst and HZSM-5 via a Tandem System. Industrial & Engineering Chemistry Research, 2020, 59, 4419-4427.	1.8	17
200	Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of <i>n</i> -dodecane. New Journal of Chemistry, 2020, 44, 2996-3003.	1.4	17
201	Morphological Modulation of Co ₂ C by Surface-Adsorbed Species for Highly Effective Low-Temperature CO ₂ Reduction. ACS Catalysis, 2022, 12, 8544-8557.	5.5	17
202	Preparation and Catalytic Performance of Mesostructured Aluminosilicate Nano-particles with Wormhole-Like Framework Structure. Catalysis Letters, 2004, 93, 225-229.	1.4	16
203	The One-Step Oxidation of Methanol to Dimethoxymethane over Nanostructure Vanadium-Based Catalysts. Catalysis Letters, 2010, 135, 48-56.	1.4	16
204	Solvent-free oxidation of alcohols by hydrogen peroxide over chromium Schiff base complexes immobilized on MCM-41. Transition Metal Chemistry, 2010, 35, 213-220.	0.7	16
205	Precisely tailoring dendritic α-Fe2O3 structures along [101̄0] directions. CrystEngComm, 2012, 14, 4074.	1.3	16
206	Polyvinylpyrrolidone/ZrO2-based sol–gel films applied in highly reflective mirrors for inertial confinement fusion. Journal of Sol-Gel Science and Technology, 2008, 47, 173-181.	1.1	15
207	Synthesis of Higher Alcohols from Syngas over Fe/K/β-Mo2C Catalyst. Catalysis Letters, 2010, 136, 9-13.	1.4	15
208	Carbon modified Fe–Mn–K catalyst for the synthesis of light olefins from CO hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 437-445.	0.8	15
209	Synthesis of amine-modified mesoporous materials for CO2 capture by a one-pot template-free method. Journal of Sol-Gel Science and Technology, 2013, 66, 353-362.	1.1	15
210	Self-regeneration of ferrites incorporated into matched matrices for thermochemical CO ₂ splitting. Journal of Materials Chemistry A, 2016, 4, 5026-5031.	5.2	15
211	Facile Solventâ€free Synthesis of Hollow Fiber Catalyst Assembled by <i>c–</i> axis Oriented ZSMâ€5 Crystals. ChemCatChem, 2018, 10, 5619-5626.	1.8	15
212	Efficient one-pot valorization of ethanol to 1-butanol over an earth-abundant Ni–MgO catalyst under mild conditions. Sustainable Energy and Fuels, 2020, 4, 1612-1615.	2.5	15
213	Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Research, 2016, 9, 1182-1192.	5.8	14
214	Porosity at the interface of organic matter and mineral components contribute significantly to gas adsorption on shales. Journal of CO2 Utilization, 2018, 28, 73-82.	3.3	14
215	Photocatalytic Coupling of Methanol and Formaldehyde into Ethylene Glycol with High Atomic Efficiency. Catalysis Letters, 2018, 148, 2274-2282.	1.4	14
216	Enhanced Hydroformylation in a Continuous Flow Microreactor System. Industrial & Engineering Chemistry Research, 2020, 59, 88-98.	1.8	14

#	Article	IF	CITATIONS
217	Comparative study on the structural, acidic and catalytic properties of nano-sized and large-particulate mesoporous aluminosilicates. Topics in Catalysis, 2006, 39, 227-235.	1.3	13
218	Synthesis and characterization of a novel type of mixed matrix membrane: surface sieving membrane. RSC Advances, 2014, 4, 10140.	1.7	13
219	Mechanism of Microwaveâ€Assisted Pyrolysis of Clucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations. ChemSusChem, 2017, 10, 3040-3043.	3.6	13
220	Facile Synthesis of Highly Cokingâ€Resistant and Active Nickelâ€Based Catalyst for Lowâ€Temperature CO ₂ Reforming of Methane. Energy Technology, 2019, 7, 1900521.	1.8	13
221	Stable Trimetallic NiFeCu Catalysts with High Carbon Resistance for Dry Reforming of Methane. ChemPlusChem, 2020, 85, 1120-1128.	1.3	13
222	Chemo- and regioselective hydroformylation of alkenes with CO ₂ /H ₂ over a bifunctional catalyst. Green Chemistry, 2021, 23, 8040-8046.	4.6	13
223	A new study on the kinetics of Stöber synthesis by in-situ liquid 29Si NMR. Journal of Sol-Gel Science and Technology, 2007, 42, 13-20.	1.1	12
224	Methanol selective oxidation to dimethoxymethane on H3PMo12O40/SBA-15 supported catalysts. Korean Journal of Chemical Engineering, 2009, 26, 902-906.	1.2	12
225	Structureâ€Dependent Selective Hydrogenation of α,βâ€Unsaturated Aldehydes over Platinum Nanocrystals Decorated with Nickel. ChemPlusChem, 2014, 79, 1258-1262.	1.3	12
226	Selective Oxidation of Methanol to Dimethoxymethane at Low Temperatures through Sizeâ€controlled VTiO _{<i>x</i>} Nanoparticles. ChemCatChem, 2017, 9, 1776-1781.	1.8	12
227	Theoretical Insights into Morphologies of Alkali-Promoted Cobalt Carbide Catalysts for Fischer–Tropsch Synthesis. Journal of Physical Chemistry C, 2021, 125, 6061-6072.	1.5	12
228	Methanol Steam Reforming over ZnPt/MoC Catalysts: Effects of Hydrogen Treatment. Industrial & Engineering Chemistry Research, 2020, 59, 18756-18770.	1.8	12
229	Hydrothermal Preparation of Visible-Light-Driven N-Br-Codoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>TiO</mml:mtext><mml:mtext International Journal of Photoenergy, 2008, 2008, 1-7.</mml:mtext </mml:msub></mml:math 	>2 ∢/# nml:r	ntexit>
230	Oxygenates from the Electrochemical Reduction of Carbon Dioxide. Chemistry - an Asian Journal, 2018, 13, 1992-2008.	1.7	11
231	Atmospheric pressure synthesis of nano-scale SAPO-34 catalysts for effective conversion of methanol to light olefins. Sustainable Energy and Fuels, 2019, 3, 3101-3108.	2.5	11
232	Quantitative Conversion of Methanol to Methyl Formate on Graphene-Confined Nano-Oxides. IScience, 2020, 23, 101157.	1.9	11
233	Gas-phase CO2 photoreduction via iron/ZSM-5 composites. Applied Catalysis A: General, 2020, 595, 117503.	2.2	11
234	Gammaâ€Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie, 2020, 132, 11421-11425.	1.6	11

#	Article	IF	CITATIONS
235	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie, 2022, 134, .	1.6	11
236	Effective and Green Synthesis of Methyl Pyrrole-1-carboxylate with Dimethyl Carbonate Over Solid Base. Catalysis Letters, 2008, 120, 299-302.	1.4	10
237	Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation. Korean Journal of Chemical Engineering, 2009, 26, 890-894.	1.2	10
238	Reaction of zinc oxide with urea and its role in urea methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 381.	0.8	10
239	Exposure of (001) planes and (011) planes in MFI zeolite. CrystEngComm, 2013, 15, 3521.	1.3	10
240	Incorporation of Highly Dispersed Cobalt Nanoparticles into the Ordered Mesoporous Carbon for CO Hydrogenation. Catalysis Letters, 2014, 144, 133-141.	1.4	10
241	Effective Macroporous Core–Shell Structure of Alumina‣upported Spinel Ferrite for Carbon Dioxide Splitting Based on Chemical Looping. Energy Technology, 2016, 4, 1349-1357.	1.8	10
242	Bimodal Mesoporous Carbon-Coated MgO Nanoparticles for CO ₂ Capture at Moderate Temperature Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 7880-7887.	1.8	10
243	Direct production of olefins <i>via</i> syngas conversion over Co ₂ C-based catalyst in slurry bed reactor. RSC Advances, 2019, 9, 4131-4139.	1.7	10
244	Size-controllable barium titanate nanopowder synthesized via one-pot solvothermal route in a mixed solvent. Journal of Electroceramics, 2006, 16, 127-133.	0.8	9
245	Enhancing low pressure CO2 adsorption of solvent-free derived mesoporous carbon by highly dispersed potassium species. RSC Advances, 2016, 6, 33580-33588.	1.7	9
246	The shape evolution from Pt _x Co _y @Co cubes to Pt _x Co _y multicubes for selective hydrogenation of α,β-unsaturated aldehyde. Nanoscale, 2016, 8, 6451-6455.	2.8	9
247	First principles studies on the selectivity of dimethoxymethane and methyl formate in methanol oxidation over V ₂ O ₅ /TiO ₂ -based catalysts. Physical Chemistry Chemical Physics, 2017, 19, 19393-19406.	1.3	9
248	The direct synthesis of a bio-lubricant by the oligomerization of methyllinoleate <i>via</i> castor oil. Green Chemistry, 2019, 21, 6658-6666.	4.6	9
249	Hierarchical ZSM-5 Supported CoMn Catalyst for the Production of Middle Distillate from Syngas. Industrial & Engineering Chemistry Research, 2021, 60, 5783-5791.	1.8	9
250	Direct synthesis of higher alcohols from syngas over modified Mo ₂ C catalysts under mild reaction conditions. Catalysis Science and Technology, 2022, 12, 1697-1708.	2.1	9
251	Determination of specific surfaces of silica xerogets by SAXS. Science Bulletin, 2000, 45, 1386-1390.	1.7	8
252	SYNTHESIS AND CHARACTERIZATION OF POLY(BUTYL ACRYLATE-CO-METHYL METHACRYLATE)/CLAY NANOCOMPOSITES VIA EMULSION POLYMERIZATION. International Journal of Nanoscience, 2006, 05, 291-297.	0.4	8

#	Article	IF	CITATIONS
253	Catalytic conversion of glucose into alkanediols over nickel-based catalysts: a mechanism study. RSC Advances, 2016, 6, 62747-62753.	1.7	8
254	Postsynthesis of mesoporous ZSM-5 zeolites with TPAOH-assisted desilication and determination of activity performance in N2O decomposition. Journal of Porous Materials, 2017, 24, 759-767.	1.3	8
255	Complete Formaldehyde Removal over 3D Structured Na _{1.1} Mn ₄ O ₈ @Mn ₅ O ₈ Biphasicâ€Crystals. ChemCatChem, 2020, 12, 3512-3522.	1.8	8
256	Toward a Full One-Pass Conversion for the Fischer–Tropsch Synthesis over a Highly Selective Cobalt Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 8195-8201.	1.8	8
257	Research Progress on the Photocatalytic Conversion of Methane and Methanol. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 923-939.	2.2	8
258	Fluorine-Modified Mesoporous Ni–Mg–Al Mixed Oxides for Partial Oxidation of Methane. Catalysis Letters, 2010, 135, 321-329.	1.4	7
259	Hydrophobic mesoporous silica applied in GC separation of hexene isomers. Journal of Sol-Gel Science and Technology, 2010, 56, 93-98.	1.1	7
260	Solar driven efficient direct conversion of methane to multicarbon oxygenates. Journal of Materials Chemistry A, 2022, 10, 7856-7868.	5.2	7
261	Cobalt-based ferrites as efficient redox materials for thermochemical two-step CO ₂ -splitting: enhanced performance due to cation diffusion. Sustainable Energy and Fuels, 2019, 3, 975-984.	2.5	6
262	Selective Production of Linear Aldehydes and Alcohols from Alkenes using Formic Acid as Syngas Surrogate. Chemistry - A European Journal, 2021, 27, 9919-9924.	1.7	6
263	The effect of the particle size on Fischer–Tropsch synthesis for ZSM-5 zeolite supported cobalt-based catalysts. Chemical Communications, 2021, 57, 13522-13525.	2.2	6
264	Effects of alkaline-earth metals on CoMn-based catalysts for the Fischer–Tropsch synthesis to olefins. Catalysis Science and Technology, 2022, 12, 2677-2687.	2.1	6
265	Direct synthesis of mesoporous organosilica from sodium silicate and organotrialkoxysilane. Journal of Materials Science Letters, 2003, 22, 1229-1231.	0.5	5
266	Textural Structure of Co-based Catalysts and their Performance for Fischer–Tropsch Synthesis. Catalysis Letters, 2010, 140, 127-133.	1.4	5
267	Influence of pore regularity on Fischer–Tropsch synthesis with Co/SiO2 Catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 155-164.	0.8	5
268	Size effect of CoxMn1-xO precursor for Fischer-Tropsch to olefins over Co2C-based catalysts. Catalysis Science and Technology, 0, , .	2.1	5
269	Investigating the Effect of the Initial Valence States of Copper on CO ₂ Electroreduction. ChemElectroChem, 2021, 8, 3366-3370.	1.7	5
270	Design of Niâ€substituted La ₂ (CeZrNi) ₂ O ₇ Pyrochlore Catalysts for Methane Dry Reforming. ChemNanoMat, 2022, 8, .	1.5	5

#	Article	IF	CITATIONS
271	Enhanced Carrier Spatial Separation and Interfacial Transfer for Photocatalytic Cyanation of Olefins. ACS Sustainable Chemistry and Engineering, 2022, 10, 831-837.	3.2	5
272	Cobalt loss from Co-ZrO2 catalyst for Fischer-Tropsch synthesis in continuously stirred tank reaction Kinetics and Catalysis Letters, 2008, 93, 351-358.	0.6	4
273	Effect of cobalt introduction order over Co/SiO2 sol–gel catalysts for Fischer–Tropsch synthesis. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 217-224.	0.8	4
274	Insight into Composition and Intermediate Evolutions of Copper-Based Catalysts during Gas-Phase CO2 Electroreduction to Multicarbon Oxygenates. Catalysts, 2021, 11, 1502.	1.6	4
275	Highly moisture-proof polysilsesquioxane coating prepared via facile sol-gel process. Journal of Coatings Technology Research, 2006, 3, 127-131.	1.2	3
276	IN SITU ASSEMBLY OF ZnS NANOFIBERS WITH HIGHLY ORDERED LAMELLAR MESOSTRUCTURE. International Journal of Nanoscience, 2006, 05, 245-251.	0.4	3
277	Non-equilibrium model for catalytic distillation process. Frontiers of Chemical Engineering in China, 2008, 2, 379-384.	0.6	3
278	Influence of Support Preparation Methods on Structure and Catalytic Activity of Co/TiO2-SiO2 for Fischer–Tropsch Synthesis. Catalysis Letters, 2009, 133, 341-345.	1.4	3
279	3 D Imaging and Structural Analysis of a Mesoporous‣ilicaâ€Body‣upported Eggshell Cobalt Catalyst for Fischer–Tropsch Synthesis. ChemCatChem, 2016, 8, 2920-2929.	r 1.8	3
280	Enhanced activity of Mg-Fe-O ferrites for two-step thermochemical CO2 splitting. Journal of CO2 Utilization, 2018, 26, 544-551.	3.3	3
281	Differences in the Nature of Reaction Process for Thermochemical CO ₂ Splitting over NiFe ₂ O ₄ â€Based Materials. Energy Technology, 2019, 7, 1800523.	1.8	3
282	Hydrofunctionalization of Olefins to Higher Aliphatic Alcohols via Visible-Light Photocatalytic Coupling. Catalysis Letters, 2019, 149, 1651-1659.	1.4	3
283	Preparation of Highly Dispersion CuO/MCM-41 Catalysts for CO ₂ Hydrogenation. Journal of Nanoscience and Nanotechnology, 2019, 19, 3218-3222.	0.9	3
284	Tuning of active sites in M/TiO2 for photocatalytic cyanation of olefins with high regioselectivity. Applied Catalysis A: General, 2020, 604, 117787.	2.2	3
285	Regioselective Hydroxymethylation of Alkenes to Linear Alcohols with CO ₂ /H ₂ Using a Rh/Ru Dual Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 16741-16748.	3.2	3
286	Catalytic Behavior of Calcium Oxide for Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol Near Room Temperature. ACS Symposium Series, 2003, , 138-158.	0.5	2
287	Additional Incorporation of Aluminum into Al-Containing Mesostructure via Hydrothermal Treatment with NaAlO2 Solution. Journal of Porous Materials, 2005, 12, 107-112.	1.3	2
288	Solventâ€Free Synthesis of <i>c</i> â€Axis Oriented ZSMâ€5 Crystals with Enhanced Methanol to Gasoline Catalytic Activity. ChemCatChem, 2016, 8, 3305-3305.	1.8	2

#	Article	IF	CITATIONS
289	Novel Cobalt Carbide Catalyst Wall-Coating Method for FeCrAlloy Microchannels Exemplified on Direct Production of Lower Olefins from Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 22967-22976.	1.8	2
290	Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Angewandte Chemie, 2022, 134, .	1.6	2
291	ZrO ₂ -SiO ₂ Coatings for Wavelength-Selective Reflection Filter. Molecular Crystals and Liquid Crystals, 1999, 337, 497-500.	0.3	1
292	Effects of lanthanum on the properties of bifunctional Ni/HY catalyst. Reaction Kinetics and Catalysis Letters, 2002, 76, 353-360.	0.6	1
293	Characterization, activity and selectivity of ethylenediamine modified Co/SiO2 FT catalyst prepared by sol-gel method. Korean Journal of Chemical Engineering, 2009, 26, 850-855.	1.2	1
294	Enhanced hydroformylation of 1â€hexene in microbubble media. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2484.	0.8	1
295	Study of the reactivity of radical-molecular addition reaction using density functional theory. Science Bulletin, 2001, 46, 480-482.	1.7	0
296	Toughening of Polycarbonate with Organic-Inorganic Hybrid Materials. Polymers and Polymer Composites, 2006, 14, 291-300.	1.0	0
297	3 D Imaging and Structural Analysis of a Mesoporous-Silica-Body-Supported Eggshell Cobalt Catalyst for Fischer-Tropsch Synthesis. ChemCatChem, 2016, 8, 2860-2860.	1.8	0