
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological Magazine, 2013, 63, 41-64.	0.4	374
2	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 2014, 73, 76-107.	1.0	320
3	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	1.3	223
4	The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geoscientific Model Development, 2022, 15, 2973-3020.	1.3	192
5	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	1.2	133
6	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	1.0	131
7	Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. International Journal of Climatology, 2006, 26, 1027-1049.	1.5	114
8	Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	110
9	An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 93, 84-120.	1.0	107
10	An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2014, 78, 35-89.	1.0	106
11	On the use of selfâ€organizing maps for studying climate extremes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3891-3903.	1.2	92
12	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	4.2	88
13	An assessment of ten ocean reanalyses in the polar regions. Climate Dynamics, 2019, 52, 1613-1650.	1.7	88
14	Influence of sea surface temperature variability on global temperature and precipitation extremes. Journal of Geophysical Research, 2009, 114, .	3.3	83
15	The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Australian Meteorological Magazine, 2013, 63, 83-99.	0.4	75
16	Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 2: Antarctic. International Journal of Climatology, 2006, 26, 1181-1199.	1.5	73
17	An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 94, 67-94.	1.0	68
18	Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. Journal of Geophysical Research, 2007, 112, .	3.3	59

#	Article	IF	CITATIONS
19	Surface heat budget over the Weddell Sea: Buoy results and model comparisons. Journal of Geophysical Research, 2002, 107, 5-1.	3.3	51
20	Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. Journal of Geophysical Research, 2011, 116, .	3.3	50
21	Investigating the influence of synoptic-scale meteorology on air quality using self-organizing maps and generalized additive modelling. Atmospheric Environment, 2011, 45, 128-136.	1.9	50
22	A New Daily Pressure Dataset for Australia and Its Application to the Assessment of Changes in Synoptic Patterns during the Last Century. Journal of Climate, 2010, 23, 1111-1126.	1.2	49
23	Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model. Cryosphere, 2017, 11, 1035-1040.	1.5	49
24	Atmospheric forcing on the drift of Arctic sea ice in 1989–2009. Geophysical Research Letters, 2012, 39,	1.5	46
25	Weddell Sea ice drift: Kinematics and wind forcing. Journal of Geophysical Research, 1996, 101, 18279-18296.	3.3	43
26	Effects of the tropospheric largeâ€scale circulation on European winter temperatures during the period of amplified Arctic warming. International Journal of Climatology, 2020, 40, 509-529.	1.5	43
27	A sea-ice sensitivity study with a global ocean-ice model. Ocean Modelling, 2012, 51, 1-18.	1.0	40
28	ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model. Australian Meteorological Magazine, 2013, 63, 213-232.	0.4	39
29	Atmospheric and Oceanic Conditions Associated with Southern Australian Heat Waves: A CMIP5 Analysis. Journal of Climate, 2014, 27, 7807-7829.	1.2	36
30	Trends in cyclones in the highâ€latitude North Atlantic during 1979–2016. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 762-779.	1.0	33
31	Response of the Weddell Sea pack ice to wind forcing. Journal of Geophysical Research, 2000, 105, 1135-1151.	3.3	32
32	Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift?. Ocean Modelling, 2014, 79, 33-42.	1.0	32
33	Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 1: the Mackenzie River Basin. International Journal of Climatology, 2009, 29, 1226-1243.	1.5	31
34	Close interactions between the Antarctic cyclone budget and largeâ€scale atmospheric circulation. Geophysical Research Letters, 2013, 40, 3237-3241.	1.5	31
35	Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dynamics, 2016, 47, 2235-2251.	1.7	31
36	New vigour involving statisticians to overcome ensemble fatigue. Nature Climate Change, 2017, 7, 697-703.	8.1	31

#	Article	IF	CITATIONS
37	Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment. Geophysical Research Letters, 2007, 34, .	1.5	29
38	A comparison of low pressure system statistics derived from a highâ€resolution NWP output and three reanalysis products over the Southern Ocean. Journal of Geophysical Research, 2009, 114, .	3.3	29
39	Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations. Australian Meteorological Magazine, 2013, 63, 101-119.	0.4	26
40	Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2. Geoscientific Model Development, 2017, 10, 1009-1031.	1.3	26
41	Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 2019, 19, 1941-1970.	1.9	24
42	The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice. Ocean Modelling, 2015, 94, 95-111.	1.0	23
43	Trend correlations for coastal eutrophication and its main local and whole-sea drivers – Application to the Baltic Sea. Science of the Total Environment, 2021, 779, 146367.	3.9	23
44	Strong Dependence of Wintertime Arctic Moisture and Cloud Distributions on Atmospheric Large-Scale Circulation. Journal of Climate, 2019, 32, 8771-8790.	1.2	22
45	Air-sea interaction over a thermal marine front in the Denmark Strait. Journal of Geophysical Research, 1998, 103, 27665-27678.	3.3	21
46	Atmospheric and oceanic conditions and the extremely low Bothnian Bay sea ice extent in 2014/2015. Geophysical Research Letters, 2015, 42, 7740-7749.	1.5	20
47	Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models. Ocean Modelling, 2016, 105, 60-70.	1.0	19
48	The sea-ice performance of the Australian climate models participating in the CMIP5. Australian Meteorological Magazine, 2013, 63, 121-143.	0.4	19
49	Variability of sea ice area in the Bohai Sea from 1958 to 2015. Science of the Total Environment, 2020, 709, 136164.	3.9	18
50	Turbulent surface fluxes and air–ice coupling in the Baltic Air–Sea–Ice Study (BASIS). Annals of Glaciology, 2001, 33, 237-242.	2.8	17
51	A Factorial Analysis of Storm Surge Flooding in Barrow, Alaska. Monthly Weather Review, 2008, 136, 898-912.	0.5	17
52	Southern Hemisphere strong polar mesoscale cyclones in high-resolution datasets. Climate Dynamics, 2016, 47, 1647-1660.	1.7	16
53	Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 2: Eurasian watersheds. International Journal of Climatology, 2009, 29, 1244-1261.	1.5	14
54	Seasonal southern hemisphere multi-variable reflection of the southern annular mode in atmosphere and ocean reanalyses. Climate Dynamics, 2018, 50, 1451-1470.	1.7	14

#	Article	IF	CITATIONS
55	Modelling sea-ice thermodynamics in BALTEX-BASIS. Annals of Glaciology, 2001, 33, 243-247.	2.8	12
56	Observed and modelled sea-ice drift response to wind forcing in the northern Baltic Sea. Tellus, Series A: Dynamic Meteorology and Oceanography, 2001, 53, 112-128.	0.8	12
57	Role of climate model dynamics in estimated climate responses to anthropogenic aerosols. Atmospheric Chemistry and Physics, 2019, 19, 9969-9987.	1.9	12
58	Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe. Journal of Climate, 2019, 32, 5363-5379.	1.2	11
59	PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: AN OVERVIEW OF THE FIRST 5 YEARS IN OPERATION AND FUTURE PROSPECTS. Geography, Environment, Sustainability, 2018, 11, 6-19.	0.6	11
60	Variable Physical Drivers of Nearâ€ s urface Turbulence in a Regulated River. Water Resources Research, 2021, 57, e2020WR027939.	1.7	11
61	Atmospheric Circulation Response to Anomalous Siberian Forcing in October 2016 and its Longâ€Range Predictability. Geophysical Research Letters, 2019, 46, 2800-2810.	1.5	10
62	Synoptic influences on seasonal, interannual and decadal temperature variations in Melbourne, Australia. International Journal of Climatology, 2010, 30, 1372-1381.	1.5	9
63	Assessment of Atmospheric Reanalyses With Independent Observations in the Weddell Sea, the Antarctic. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12468-12484.	1.2	9
64	Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas. Climate Dynamics, 2021, 57, 3505.	1.7	9
65	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	1.9	9
66	An energy-diagnostics intercomparison of coupled ice-ocean Arctic models. Ocean Modelling, 2006, 11, 1-27.	1.0	7
67	An idealized wave–ice interaction model without subgrid spatial or temporal discretizations. Annals of Glaciology, 2015, 56, 258-262.	2.8	6
68	Subpolar Southern Ocean Response to Changes in the Surface Momentum, Heat, and Freshwater Fluxes under 2xCO2. Journal of Climate, 2021, 34, 8755-8775.	1.2	6
69	Southern Ocean sea ice concentration budgets of five ocean-sea ice reanalyses. Climate Dynamics, 2022, 59, 3265-3285.	1.7	5
70	NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China. Geoscientific Model Development, 2022, 15, 1269-1288.	1.3	4
71	Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar. Cryosphere, 2022, 16, 1821-1844.	1.5	4
72	An analysis of buoy drift in the northern North Atlantic with detection of drogue loss events. Atmosphere - Ocean, 1997, 35, 471-494.	0.6	3

#	Article	IF	CITATIONS
73	Sea Ice Modelling. Springer Polar Sciences, 2020, , 315-387.	0.0	3
74	Enhancing MML Clustering Using Context Data with Climate Applications. Lecture Notes in Computer Science, 2009, , 350-359.	1.0	1