
Hirokazu Koseki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation. Translational Stroke Research, 2020, 11, 80-92.	4.2	35
2	A sphingosineâ€1â€phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. British Journal of Pharmacology, 2017, 174, 2085-2101.	5.4	33
3	Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Scientific Reports, 2020, 10, 20004.	3.3	24
4	Hemodynamic Force as a Potential Regulator of Inflammation-Mediated Focal Growth of Saccular Aneurysms in a Rat Model. Journal of Neuropathology and Experimental Neurology, 2021, 80, 79-88.	1.7	19
5	RNA sequencing analysis revealed the induction of CCL3 expression in human intracranial aneurysms. Scientific Reports, 2019, 9, 10387.	3.3	18
6	Vasa vasorum formation is associated with rupture of intracranial aneurysms. Journal of Neurosurgery, 2020, 133, 789-799.	1.6	14
7	Intraoperative and Postoperative Bleeding in Microvascular Decompression for Trigeminal Neuralgia. World Neurosurgery, 2018, 118, e123-e128.	1.3	12
8	Rat Model of Intracranial Aneurysm: Variations, Usefulness, and Limitations of theÂHashimoto Model. Acta Neurochirurgica Supplementum, 2020, 127, 35-41.	1.0	12
9	Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Scientific Reports, 2020, 10, 8330.	3.3	12
10	Prognostic Assessment of Aneurysmal Subarachnoid Patients with WFNS Grade V by CT Perfusion on Arrival. World Neurosurgery, 2016, 92, 1-6.	1.3	11
11	Eicosapentaenoic acid prevents the progression of intracranial aneurysms in rats. Journal of Neuroinflammation, 2020, 17, 129.	7.2	9
12	Real-time Imaging of an Experimental Intracranial Aneurysm in Rats. Neurologia Medico-Chirurgica, 2019, 59, 19-26.	2.2	7