Xingzhong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803189/publications.pdf

Version: 2024-02-01

516710 713466 22 789 16 21 citations g-index h-index papers 22 22 22 832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT - Food Science and Technology, 2022, 154, 112605.	5.2	14
2	Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocolloids, 2022, 126, 107480.	10.7	36
3	Nanocellulose from bamboo shoots as perfect Pickering stabilizer: Effect of the emulsification process on the interfacial and emulsifying properties. Food Bioscience, 2022, 46, 101596.	4.4	10
4	Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocolloids, 2021, 115, 106609.	10.7	52
5	Physico-chemical properties of reduced-fat biscuits prepared using O/W cellulose-based pickering emulsion. LWT - Food Science and Technology, 2021, 148, 111745.	5.2	22
6	Effect of surface charge density of bacterial cellulose nanofibrils on the rheology property of O/W Pickering emulsions. Food Hydrocolloids, 2021, 120, 106944.	10.7	34
7	Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocolloids, 2020, 101, 105519.	10.7	39
8	Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocolloids, 2020, 100, 105440.	10.7	56
9	Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chemistry, 2020, 331, 127108.	8.2	68
10	Stable cellular foams and oil powders derived from methylated microcrystalline cellulose stabilized pickering emulsions. Food Hydrocolloids, 2020, 104, 105742.	10.7	19
11	Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloids, 2020, 108, 106025.	10.7	61
12	Preparation of Polyanionic Cellulosic Microparticles with Antioxidant Capacity by Introducing Sulphurous Acid Groups onto Cellulose. Advances in Polymer Technology, 2019, 2019, 1-8.	1.7	2
13	Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocolloids, 2019, 97, 105180.	10.7	74
14	Adipocyte Hypoxia-Inducible Factor 2α Suppresses Atherosclerosis by Promoting Adipose Ceramide Catabolism. Cell Metabolism, 2019, 30, 937-951.e5.	16.2	89
15	Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. International Journal of Biological Macromolecules, 2019, 128, 673-680.	7.5	51
16	Surface modification of microcrystalline cellulose: Physicochemical characterization and applications in the Stabilization of Pickering emulsions. International Journal of Biological Macromolecules, 2019, 132, 1176-1184.	7.5	52
17	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	4.6	26
18	Ethyl cellulose aqueous dispersions: A fascinating supporter for increasing the solubility and sustained-release of cinnamaldehyde. Journal of Food Processing and Preservation, 2018, 42, e13696.	2.0	1

#	Article	IF	CITATIONS
19	Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance. EBioMedicine, 2018, 31, 202-216.	6.1	50
20	Ethyl cellulose nanodispersions as stabilizers for oil in Âwater Pickering emulsions. Scientific Reports, 2017, 7, 12079.	3.3	20
21	Highly transparent and flexible silica/cellulose films with a low coefficient of thermal expansion. RSC Advances, 2014, 4, 52349-52356.	3.6	5
22	Clarification of GO acted as a barrier against the crack propagation of the cellulose composite films. Composites Science and Technology, 2014, 104, 52-58.	7.8	8