Peter L Strick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/380310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews, 2000, 31, 236-250.	9.1	1,677
2	Motor Areas of the Medial Wall: A Review of Their Location and Functional Activation. Cerebral Cortex, 1996, 6, 342-353.	1.6	1,590
3	Cerebellum and Nonmotor Function. Annual Review of Neuroscience, 2009, 32, 413-434.	5.0	1,469
4	Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. Journal of Neuroscience, 2003, 23, 8432-8444.	1.7	1,365
5	Imaging the premotor areas. Current Opinion in Neurobiology, 2001, 11, 663-672.	2.0	1,089
6	Cerebellar Projections to the Prefrontal Cortex of the Primate. Journal of Neuroscience, 2001, 21, 700-712.	1.7	894
7	The cerebellum communicates with the basal ganglia. Nature Neuroscience, 2005, 8, 1491-1493.	7.1	727
8	Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized â€~premotor' areas. Brain Research, 1979, 177, 176-182.	1.1	666
9	The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8452-8456.	3.3	653
10	Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 2013, 17, 241-254.	4.0	634
11	Muscle and Movement Representations in the Primary Motor Cortex. Science, 1999, 285, 2136-2139.	6.0	630
12	Basal Ganglia Output and Cognition: Evidence from Anatomical, Behavioral, and Clinical Studies. Brain and Cognition, 2000, 42, 183-200.	0.8	589
13	An Unfolded Map of the Cerebellar Dentate Nucleus and its Projections to the Cerebral Cortex. Journal of Neurophysiology, 2003, 89, 634-639.	0.9	579
14	Motor areas in the frontal lobe of the primate. Physiology and Behavior, 2002, 77, 677-682.	1.0	570
15	The basal ganglia and the cerebellum: nodes in an integrated network. Nature Reviews Neuroscience, 2018, 19, 338-350.	4.9	517
16	Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 918-923.	3.3	500
17	Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. Journal of Comparative Neurology, 1994, 341, 375-392.	0.9	487
18	Frontal Lobe Inputs to the Digit Representations of the Motor Areas on the Lateral Surface of the Hemisphere. Journal of Neuroscience, 2005, 25, 1375-1386.	1.7	461

PETER L STRICK

#	Article	IF	CITATIONS
19	The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1. Journal of Neuroscience, 1999, 19, 1446-1463.	1.7	418
20	Spinal Cord Terminations of the Medial Wall Motor Areas in Macaque Monkeys. Journal of Neuroscience, 1996, 16, 6513-6525.	1.7	379
21	Muscle representation in the macaque motor cortex: An anatomical perspective. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8257-8262.	3.3	376
22	Supplementary Motor Area and Presupplementary Motor Area: Targets of Basal Ganglia and Cerebellar Output. Journal of Neuroscience, 2007, 27, 10659-10673.	1.7	374
23	Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 2017, 16, 203-229.	1.4	321
24	The Spinothalamic System Targets Motor and Sensory Areas in the Cerebral Cortex of Monkeys. Journal of Neuroscience, 2009, 29, 14223-14235.	1.7	315
25	Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 2001, 4, 1020-1025.	7.1	308
26	The Cerebellum and Basal Ganglia are Interconnected. Neuropsychology Review, 2010, 20, 261-270.	2.5	299
27	Rabies as a transneuronal tracer of circuits in the central nervous system. Journal of Neuroscience Methods, 2000, 103, 63-71.	1.3	294
28	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
29	Cerebellar Output Channels. International Review of Neurobiology, 1997, 41, 61-82.	0.9	218
30	Basal Ganglia and Cerebellar Inputs to â€~AIP'. Cerebral Cortex, 2005, 15, 913-920.	1.6	212
31	Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum, 2017, 16, 577-594.	1.4	184
32	Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16068-16073.	3.3	182
33	Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 2004, 143, 447-459.	0.9	170
34	Cerebellar connections with the motor cortex and the arcuate premotor area: An analysis employing retrograde transneuronal transport of WGA-HRP. Journal of Comparative Neurology, 1989, 288, 612-626.	0.9	156
35	Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9922-9927.	3.3	155
36	Skill Representation in the Primary Motor Cortex After Long-Term Practice. Journal of Neurophysiology, 2007, 97, 1819-1832.	0.9	137

PETER L STRICK

#	Article	IF	CITATIONS
37	Motor and Nonmotor Domains in the Monkey Dentate. Annals of the New York Academy of Sciences, 2002, 978, 289-301.	1.8	115
38	Step-Tracking Movements of the Wrist. IV. Muscle Activity Associated With Movements in Different Directions. Journal of Neurophysiology, 1999, 81, 319-333.	0.9	112
39	Activation of the Supplementary Motor Area (SMA) during Performance of Visually Guided Movements. Cerebral Cortex, 2003, 13, 977-986.	1.6	106
40	Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nature Neuroscience, 2013, 16, 1340-1347.	7.1	105
41	Posterior parietal cortex contains a command apparatus for hand movements. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4255-4260.	3.3	97
42	Activation on the Medial Wall During Remembered Sequences of Reaching Movements in Monkeys. Journal of Neurophysiology, 1997, 77, 2197-2201.	0.9	87
43	Corticomotoneuronal cells are "functionally tuned― Science, 2015, 350, 667-670.	6.0	79
44	Multiple areas of the cerebral cortex influence the stomach. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13078-13083.	3.3	63
45	The Cortical Motor Areas and the Emergence of Motor Skills: A Neuroanatomical Perspective. Annual Review of Neuroscience, 2021, 44, 425-447.	5.0	53
46	The Motor Cortex Communicates with the Kidney. Journal of Neuroscience, 2012, 32, 6726-6731.	1.7	52
47	Inactivation of the Dorsal Premotor Area Disrupts Internally Generated, But Not Visually Guided, Sequential Movements. Journal of Neuroscience, 2016, 36, 1971-1976.	1.7	47
48	Motor Areas on the Medial Wall of the Hemisphere. Novartis Foundation Symposium, 1998, 218, 64-80.	1.2	45
49	The mind–body problem: Circuits that link the cerebral cortex to the adrenal medulla. Proceedings of the United States of America, 2019, 116, 26321-26328.	3.3	42
50	Transneuronal tracing with neurotropic viruses reveals network macroarchitecture. Current Opinion in Neurobiology, 2013, 23, 245-249.	2.0	33
51	Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. Journal of Comparative Neurology, 2001, 430, 369-388.	0.9	24
52	Activity of wrist muscles during step-tracking movements in different directions. Brain Research, 1986, 367, 287-291.	1.1	21
53	Cortical basis for skilled vocalization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122345119.	3.3	19
54	The motor cortex uses active suppression to sculpt movement. Science Advances, 2020, 6, .	4.7	17

Peter L Strick

#	Article	IF	CITATIONS
55	Force requirements and patterns of muscle activity. Behavioral and Brain Sciences, 1989, 12, 221-224.	0.4	12
56	3D Reconstruction and Standardization of the Rat Facial Nucleus for Precise Mapping of Vibrissal Motor Networks. Neuroscience, 2018, 368, 171-186.	1.1	11
57	Motor Areas in the Frontal Lobe. Frontiers in Neuroscience, 2004, , .	0.0	11
58	Targeted single-neuron infection with rabies virus for transneuronal multisynaptic tracing. Journal of Neuroscience Methods, 2012, 209, 367-370.	1.3	9
59	The development of the basal ganglia in Capuchin monkeys (Cebus apella). Brain Research, 2010, 1329, 82-88.	1.1	4
60	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777.	1.2	4
61	Cerebellar Outputs in Non-human Primates: An Anatomical Perspective Using Transsynaptic Tracers. , 2013, , 549-569.		4
62	Establishing the marmoset as a nonâ€human primate model of Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e049952.	0.4	2
63	Motor systems. Current Opinion in Neurobiology, 2006, 16, 601-603.	2.0	1
64	Cerebellar Outputs in Non-human Primates: An Anatomical Perspective Using Transsynaptic Tracers. , 2022, , 681-701.		0