João Agostinho Machado-Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802400/publications.pdf

Version: 2024-02-01

JoãO Agostinho

#	Article	IF	CITATIONS
1	Loss of long noncoding RNA FOXF1-AS1 regulates epithelial-mesenchymal transition, stemness and metastasis of non-small cell lung cancer cells. Oncotarget, 2016, 7, 68339-68349.	0.8	64
2	ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 365-374.	1.8	50
3	ARHGAP21 Protein, a New Partner of α-Tubulin Involved in Cell-Cell Adhesion Formation and Essential for Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2013, 288, 2179-2189.	1.6	49
4	Familial systemic mastocytosis with germline KIT K509I mutation is sensitive to treatment with imatinib, dasatinib and PKC412. Leukemia Research, 2014, 38, 1245-1251.	0.4	47
5	ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Experimental Cell Research, 2014, 324, 137-145.	1.2	46
6	FMNL1 promotes proliferation and migration of leukemia cells. Journal of Leukocyte Biology, 2013, 94, 503-512.	1.5	41
7	Hydroxyurea is associated with reductions in hypercoagulability markers in sickle cell anemia. Journal of Thrombosis and Haemostasis, 2012, 10, 1967-1970.	1.9	39
8	Stathmin 1 in normal and malignant hematopoiesis. BMB Reports, 2014, 47, 660-665.	1.1	36
9	Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics, 2018, 73, e566s.	0.6	35
10	Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomedicine and Pharmacotherapy, 2018, 101, 278-286.	2.5	31
11	IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Letters, 2019, 456, 59-68.	3.2	31
12	ANKHD1 regulates cell cycle progression and proliferation in multiple myeloma cells. FEBS Letters, 2012, 586, 4311-4318.	1.3	30
13	Elevated hypercoagulability markers in hemoglobin SC disease. Haematologica, 2015, 100, 466-471.	1.7	29
14	De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes. Scientific Reports, 2017, 7, 40707.	1.6	29
15	Stathmin 1 is involved in the highly proliferative phenotype of high-risk myelodysplastic syndromes and acute leukemia cells. Leukemia Research, 2014, 38, 251-257.	0.4	28
16	DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genetics, 2021, 252-253, 6-24.	0.2	28
17	NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2V617F-positive myeloproliferative neoplasm cells. Signal Transduction and Targeted Therapy, 2020, 5, 5.	7.1	26
18	Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 450-461	1.8	25

JoãO AGOSTINHO

#	Article	IF	CITATIONS
19	IL10 inversely correlates with the percentage of CD8+ cells in MDS patients. Leukemia Research, 2013, 37, 541-546.	0.4	23
20	ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 583-593.	1.9	23
21	Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1404-1411.	1.9	22
22	ANKHD1 represses p21 (WAF1/CIP1) promoter and promotes multiple myeloma cell growth. European Journal of Cancer, 2015, 51, 252-259.	1.3	22
23	Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia. European Journal of Cancer, 2015, 51, 2076-2085.	1.3	21
24	PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genetics, 2019, 233-234, 56-66.	0.2	21
25	CATS (FAM64A) abnormal expression reduces clonogenicity of hematopoietic cells. Oncotarget, 2016, 7, 68385-68396.	0.8	20
26	IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms. Oncotarget, 2016, 7, 6948-6959.	0.8	20
27	Single-nucleotide polymorphism array (SNP-A) improves the identification of chromosomal abnormalities by metaphase cytogenetics in myelodysplastic syndrome. Journal of Clinical Pathology, 2017, 70, 435-442.	1.0	19
28	Distinct expression profiles of MSI2 and NUMB genes in myelodysplastic syndromes and acute myeloid leukemia patients. Leukemia Research, 2012, 36, 1300-1303.	0.4	18
29	Tenâ€Elevenâ€Translocation 2 (<scp>TET</scp> 2) is downregulated in myelodysplastic syndromes. European Journal of Haematology, 2015, 94, 413-418.	1.1	18
30	IRS1/β atenin Axis Is Activated and Induces MYC Expression in Acute Lymphoblastic Leukemia Cells. Journal of Cellular Biochemistry, 2017, 118, 1774-1781.	1.2	17
31	Low Ten-eleven-translocation 2 (TET2) transcript level is independent of TET2 mutation in patients with myeloid neoplasms. Diagnostic Pathology, 2016, 11, 28.	0.9	16
32	Comprehensive analysis of cytoskeleton regulatory genes identifies ezrin as a prognostic marker and molecular target in acute myeloid leukemia. Cellular Oncology (Dordrecht), 2021, 44, 1105-1117.	2.1	16
33	Microemulsion for Prolonged Release of Fenretinide in the Mammary Tissue and Prevention of Breast Cancer Development. Molecular Pharmaceutics, 2021, 18, 3401-3417.	2.3	16
34	Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget, 2015, 6, 29573-29584.	0.8	16
35	BNIP3L in myelodysplastic syndromes and acute myeloid leukemia: impact on disease outcome and cellular response to decitabine. Haematologica, 2016, 101, e445-e448.	1.7	15
36	Downregulation of IRS2 in myelodysplastic syndrome: A possible role in impaired hematopoietic cell differentiation. Leukemia Research, 2012, 36, 931-935.	0.4	14

JoãO AGOSTINHO

#	Article	IF	CITATIONS
37	Imatinib restores VASP activity and its interaction with Zyxin in BCR–ABL leukemic cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 388-395.	1.9	14
38	Reversine triggers mitotic catastrophe and apoptosis in K562 cells. Leukemia Research, 2016, 48, 26-31.	0.4	14
39	Metformin exerts multitarget antileukemia activity in JAK2V617F-positive myeloproliferative neoplasms. Cell Death and Disease, 2018, 9, 311.	2.7	14
40	Upâ€regulation of <scp>SPINT</scp> 2/ <scp>HAI</scp> â€⊋ by Azacytidine in bone marrow mesenchymal stromal cells affects leukemic stem cell survival and adhesion. Journal of Cellular and Molecular Medicine, 2019, 23, 1562-1571.	1.6	13
41	Autophagy inhibition potentiates ruxolitinib-induced apoptosis in JAK2V617F cells. Investigational New Drugs, 2020, 38, 733-745.	1.2	13
42	Reversine exhibits antineoplastic activity in JAK2V617F-positive myeloproliferative neoplasms. Scientific Reports, 2019, 9, 9895.	1.6	12
43	<i>YAP1</i> expression in myelodysplastic syndromes and acute leukemias. Leukemia and Lymphoma, 2014, 55, 2413-2415.	0.6	11
44	Pradimicin-IRD exhibits antineoplastic effects by inducing DNA damage in colon cancer cells. Biochemical Pharmacology, 2019, 168, 38-47.	2.0	11
45	Paclitaxel induces Stathmin 1 phosphorylation, microtubule stability and apoptosis in acute lymphoblastic leukemia cells. Heliyon, 2017, 3, e00405.	1.4	9
46	Stathmin 1 is highly expressed and associated with survival outcome in malignant adrenocortical tumours. Investigational New Drugs, 2020, 38, 899-908.	1.2	9
47	Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 35, 116085.	1.4	9
48	Serine Protease Inhibitor Kunitz-Type 2 Is Downregulated in Myelodysplastic Syndromes and Modulates Cell–Cell Adhesion. Stem Cells and Development, 2014, 23, 1109-1120.	1.1	8
49	The U2AF homology motif kinase 1 (UHMK1) is upregulated upon hematopoietic cell differentiation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 959-966.	1.8	8
50	AD80, a multikinase inhibitor, exhibits antineoplastic effects in acute leukemia cellular models targeting the PI3K/STMN1 axis. Investigational New Drugs, 2021, 39, 1139-1149.	1.2	8
51	NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Investigational New Drugs, 2021, 39, 736-746.	1.2	7
52	Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes. BMB Reports, 2020, 53, 413-418.	1.1	7
53	Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP–FRB Interaction and Autophagy. Cells, 2022, 11, 385.	1.8	7
54	Differential profile of PIP4K2A expression in hematological malignancies. Blood Cells, Molecules, and Diseases, 2015, 55, 228-235.	0.6	6

JoãO Agostinho

#	Article	IF	CITATIONS
55	Clinical features of JAK2V617F- or CALR-mutated essential thrombocythemia and primary myelofibrosis. Blood Cells, Molecules, and Diseases, 2016, 60, 74-77.	0.6	6
56	Reversine exerts cytotoxic effects through multiple cell death mechanisms in acute lymphoblastic leukemia. Cellular Oncology (Dordrecht), 2020, 43, 1191-1201.	2.1	6
57	STMN1 is highly expressed and contributes to clonogenicity in acute promyelocytic leukemia cells. Investigational New Drugs, 2022, 40, 438-452.	1.2	6
58	Clinical and molecular profile of a Brazilian cohort of patients with classical BCR-ABL1-negative myeloproliferative neoplasms. Hematology, Transfusion and Cell Therapy, 2020, 42, 238-244.	0.1	5
59	NSC305787, a pharmacological ezrin inhibitor, exhibits antineoplastic activity in pancreatic cancer cells. Investigational New Drugs, 2022, 40, 728-737.	1.2	5
60	Lack of association between MDM2 SNP309 and TP53 Arg72Pro polymorphisms with clinical outcomes in myelodysplastic syndrome. Neoplasma, 2012, 59, 530-535.	0.7	4
61	Gene Expression Analysis of the Brazilian Type of Hereditary Persistence of Fetal Hemoglobin: Identification of Genes that Could be Related to γ-Globin Activation. Hemoglobin, 2013, 37, 516-535.	0.4	4
62	Effects of RhoA and RhoC upon the sensitivity of prostate cancer cells to glutamine deprivation. Small GTPases, 2021, 12, 20-26.	0.7	4
63	Effects of trabectedin in the zebrafish Danio rerio: from cells to larvae. Environmental Advances, 2022, 8, 100208.	2.2	4
64	Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules, 2021, 26, 7362.	1.7	4
65	PIPKIIα is widely expressed in hematopoietic-derived cells and may play a role in the expression of alpha- and gamma-globins in K562 cells. Molecular and Cellular Biochemistry, 2014, 393, 145-153.	1.4	3
66	Exploring redox vulnerabilities in JAK2V617F-positive cellular models. Hematology, Transfusion and Cell Therapy, 2021, 43, 430-436.	0.1	3
67	Synthetic cyclopenta[b]indoles exhibit antineoplastic activity by targeting microtubule dynamics in acute myeloid leukemia cells. European Journal of Pharmacology, 2021, 894, 173853.	1.7	3
68	Screening for hotspot mutations in PI3K, JAK2, FLT3 and NPM1 in patients with myelodysplastic syndromes. Clinics, 2011, 66, 793-9.	0.6	3
69	Somatic mutations of calreticulin in a Brazilian cohort of patients with myeloproliferative neoplasms. Revista Brasileira De Hematologia E Hemoterapia, 2015, 37, 211-214.	0.7	2
70	Reactive oxygen species overload promotes apoptosis in JAK2V617F-positive cell lines. Revista Brasileira De Hematologia E Hemoterapia, 2016, 38, 179-181.	0.7	2
71	Differential profile of CDKN1A and TP53 expressions in bone marrow mesenchymal stromal cells from myeloid neoplasms. Revista Brasileira De Hematologia E Hemoterapia, 2016, 38, 368-370.	0.7	2
72	Increased levels of cyclin D1 negatively impacts on acute lymphoblastic leukemia overall survival. Applied Cancer Research, 2018, 38, .	1.0	2

JoãO AGOSTINHO

#	Article	IF	CITATIONS
73	Obatoclax reduces cell viability of acute myeloid leukemia cell lines independently of their sensitivity to venetoclax. Hematology, Transfusion and Cell Therapy, 2021, 44, 124-124.	0.1	2
74	Targeting glioma cells by antineoplastic activity of reversine. Oncology Letters, 2021, 22, 610.	0.8	2
75	Embelin potentiates venetoclax-induced apoptosis in acute myeloid leukemia cells. Toxicology in Vitro, 2021, 76, 105207.	1.1	2
76	Stathmin 1 expression in plasma cell neoplasms. Revista Brasileira De Hematologia E Hemoterapia, 2017, 39, 183-185.	0.7	1
77	Acute myeloid leukemia with e1a2 BCR-ABL1 fusion gene: two cases with peculiar molecular and clinical presentations. Revista Brasileira De Hematologia E Hemoterapia, 2017, 39, 379-384.	0.7	1
78	CALR (calreticulin). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2018, , .	0.1	1
79	IRS2 (insulin receptor substrate 2). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2018, , .	0.1	1
80	Suppression of multiple antiâ€apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms. Cancer Science, 2021, , .	1.7	1
81	Differential cytotoxic activity of pharmacological inhibitors of IGF1R-related pathways in JAK2V617F driven cells. Toxicology in Vitro, 2022, 83, 105384.	1.1	1
82	IL32 expression in peripheral blood CD3+ cells from myelodysplastic syndromes patients. Applied Cancer Research, 2017, 37, .	1.0	0
83	SIVA, a target of p53, is downregulated in myelodysplastic syndromes. Applied Cancer Research, 2017, 37,	1.0	Ο
84	TET2 is upregulated during erythroid differentiation of CD34+ cells from healthy donors and myelodysplastic syndrome patients. Applied Cancer Research, 2017, 37, .	1.0	0
85	IRAK1 expression in bone marrow cells does not impact patient outcomes in myelodysplastic syndromes. Hematology, Transfusion and Cell Therapy, 2018, 40, 92-95.	0.1	0
86	PTK2 and PTPN11 expression in myelodysplastic syndromes. Clinics, 2013, 68, 1371-1375.	0.6	0
87	Stathmin 1, a Therapeutic Target in Esophageal Carcinoma?. Asian Pacific Journal of Cancer Prevention, 2014, 15, 6461-6462.	0.5	0
88	ANKHD1 (ankyrin repeat and KH domain containing 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	0
89	PIP4K2A (phosphatidylinositol-5-phosphate 4-kinase, type II, alpha). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2018, , .	0.1	0
90	MAD1L1 (mitotic arrest deficient 1 like 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2018, , .	0.1	0

JoãO Agostinho

#	Article	IF	CITATIONS
91	IGF1R-IRS1/2 Signaling Pathway Is a Potential Target for FLT3-Mutated Acute Myeloid Leukemia. Blood, 2019, 134, 2689-2689.	0.6	0
92	BUB3 (BUB3 mitotic checkpoint protein). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2019, , .	0.1	0
93	Proteolytic processing in autophagy. , 2022, , 81-91.		0
94	BIRC5 (baculoviral IAP repeat containing 5). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2019, , .	0.1	0
95	BIRC7 (baculoviral IAP repeat containing 7). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2020, , .	0.1	0
96	Phenformin increases early hematopoietic progenitors in the Jak2V617F murine model. Investigational New Drugs, 2022, , 1.	1.2	0
97	Expression of transforming growth factor β pathway components in chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Transplant Immunology, 2022, 70, 101514.	0.6	0
98	Irs1S57X Heterozygous Mutant Mice Display Normal Hematopoiesis and Phenotypic Features, While Homozygous Knockout Exhibit High Fetal or Postnatal Lethality. Blood, 2020, 136, 33-34.	0.6	0