Minghang Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3802271/minghang-li-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32	1,367 citations	15	34
papers		h-index	g-index
34 ext. papers	1,927 ext. citations	7.8 avg, IF	5.08 L-index

#	Paper	IF	Citations
32	Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1543-1553	9.3	2
31	Ti C T /MoS Self-Rolling Rod-Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption <i>Advanced Science</i> , 2022 , e2201118	13.6	5
30	A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. <i>Journal of Materials Science and Technology</i> , 2022 , 125, 29-37	9.1	1
29	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. <i>Research</i> , 2022 , 2022, 1-7	7.8	1
28	Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption. <i>Chemical Engineering Journal</i> , 2021 , 433, 133743	14.7	4
27	Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. <i>Ceramics International</i> , 2021 , 47, 13628-13634	5.1	8
26	Protein-Derived Hybrid Carbon Nanospheres with Tunable Microwave Absorbing Performance in the X-Band. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 2685-2693	4	2
25	A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. <i>Chemical Engineering Journal</i> , 2021 , 419, 129414	14.7	33
24	Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. <i>Carbon</i> , 2021 , 183, 322-331	10.4	8
23	A lightweight CNWs-SiO2/3Al2O3I2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. <i>Ceramics International</i> , 2020 , 46, 20395-20403	5.1	6
22	A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 11774-11783	2.1	4
21	Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3l2SiO2 porous ceramic. <i>Ceramics International</i> , 2020 , 46, 22474-22481	5.1	9
20	Electromagnetic interference shielding Ti3C2T -bonded carbon black films with enhanced absorption performance. <i>Chinese Chemical Letters</i> , 2020 , 31, 1026-1029	8.1	9
19	Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. <i>Journal of Materials Science and Technology</i> , 2020 , 59, 164-172	9.1	70
18	In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance. <i>Composites Part B: Engineering</i> , 2020 , 202, 108408	10	15
17	Lightweight TiCT MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. <i>ACS Applied Materials & Discrete Amplied Materials & Discret</i>	9.5	266
16	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. <i>Carbon</i> , 2019 , 146, 210-217	10.4	92

LIST OF PUBLICATIONS

15	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. <i>ACS Applied Materials & Description ACS ACS APPLIED & Description ACS ACS APPLIED & Description ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	6 ^{9.5}	62
14	Carbon nanowires reinforced porous SiO2/3Al2O3l2SiO2 ceramics with tunable electromagnetic absorption properties. <i>Ceramics International</i> , 2019 , 45, 11316-11324	5.1	5
13	Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. <i>Carbon</i> , 2019 , 147, 276-283	10.4	59
12	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. <i>Carbon</i> , 2019 , 148, 421-429	10.4	7°
11	Thermal stability and dielectric properties of 2D Ti 2 C MXenes via annealing under a gas mixture of Ar and H 2 atmosphere. <i>Functional Composites and Structures</i> , 2019 , 1, 015002	3.5	9
10	Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 435102	3	7
9	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 5305-5315	3.8	20
8	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 5364-5372	9.5	33
7	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. <i>Carbon</i> , 2019 , 142, 346-353	10.4	178
6	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. <i>Carbon</i> , 2018 , 132, 343-351	10.4	189
5	Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. <i>Nanotechnology</i> , 2018 , 29, 184003	3.4	31
4	A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 4189-4197	6	31
3	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. <i>ACS Applied Materials & District Amplied Materials & Distri</i>	9.5	110
2	Synthesis of SiCON aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. <i>Journal of Materials Chemistry C</i> ,	7.1	2
1	Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	26