
Minghang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightweight Ti ₂ CT <i>_x</i> MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Applied Materials & Interfaces, 2019, 11, 10198-10207.	8.0	488
2	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	10.3	280
3	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346-353.	10.3	253
4	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Interfaces, 2018, 10, 34524-34533.	8.0	172
5	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon, 2019, 146, 210-217.	10.3	161
6	Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. Journal of Materials Science and Technology, 2020, 59, 164-172.	10.7	125
7	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon, 2019, 148, 421-429.	10.3	100
8	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 22628-22636.	8.0	99
9	Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon, 2019, 147, 276-283.	10.3	91
10	Ti ₃ C ₂ T <i>_x</i> /MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	11.2	85
11	A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chemical Engineering Journal, 2021, 419, 129414.	12.7	82
12	Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 946-956.	21.1	65
13	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Applied Materials & Interfaces, 2019, 11, 5364-5372.	8.0	64
14	A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. Journal of the European Ceramic Society, 2018, 38, 4189-4197.	5.7	44
15	Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon, 2021, 183, 322-331.	10.3	40
16	Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology, 2018, 29, 184003.	2.6	39
17	Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceramics International, 2021, 47, 13628-13634.	4.8	31
18	Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption. Chemical Engineering Journal, 2022, 433, 133743.	12.7	30

Minghang Li

#	Article	IF	CITATIONS
19	In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance. Composites Part B: Engineering, 2020, 202, 108408.	12.0	29
20	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. Journal of the American Ceramic Society, 2019, 102, 5305-5315.	3.8	28
21	Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic. Ceramics International, 2020, 46, 22474-22481.	4.8	20
22	Thermal stability and dielectric properties of 2D Ti ₂ C MXenes via annealing under a gas mixture of Ar and H ₂ atmosphere. Functional Composites and Structures, 2019, 1, 015002.	3.4	19
23	Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. Journal of Colloid and Interface Science, 2022, 606, 1543-1553.	9.4	19
24	Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibers/SiCN nanocomposites with excellent electromagnetic absorption performance. Carbon, 2022, 188, 349-359.	10.3	17
25	A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. Journal of Materials Science and Technology, 2022, 125, 29-37.	10.7	17
26	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	5.7	17
27	A lightweight CNWs-SiO2/3Al2O3·2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. Ceramics International, 2020, 46, 20395-20403.	4.8	16
28	Electromagnetic interference shielding Ti3C2T -bonded carbon black films with enhanced absorption performance. Chinese Chemical Letters, 2020, 31, 1026-1029.	9.0	15
29	Protein-Derived Hybrid Carbon Nanospheres with Tunable Microwave Absorbing Performance in the X-Band. ACS Applied Electronic Materials, 2021, 3, 2685-2693.	4.3	14
30	Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band. Journal Physics D: Applied Physics, 2019, 52, 435102.	2.8	13
31	Carbon nanowires reinforced porous SiO2/3Al2O3·2SiO2 ceramics with tunable electromagnetic absorption properties. Ceramics International, 2019, 45, 11316-11324.	4.8	9
32	A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 11774-11783.	2.2	8
33	Synthesis of Si–C–N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. Journal of Materials Chemistry C, 2021, 9, 16966-16977.	5.5	8
34	A frequency selective surface loaded two-layer composite for tunable microwave absorption. Materials Research Express, 0, , .	1.6	1