Wei Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3802092/wei-zhang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

115
papers3,599
citations33
h-index56
g-index119
ext. papers4,577
ext. citations8
avg, IF5.77
L-index

#	Paper	IF	Citations
115	Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	239
114	Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	220
113	A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016). <i>Science of the Total Environment</i> , 2018 , 615, 906-917	10.2	197
112	Transport and Fate of Microbial Pathogens in Agricultural Settings. <i>Critical Reviews in Environmental Science and Technology</i> , 2013 , 43, 775-893	11.1	155
111	Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. <i>Environmental Science & Environmental Science & E</i>	10.3	132
110	Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 173, 331-338	7	111
109	Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. <i>Environmental Science & Environmental Science </i>	10.3	105
108	Insight into the distribution of pharmaceuticals in soil-water-plant systems. <i>Water Research</i> , 2019 , 152, 38-46	12.5	84
107	Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. <i>Environmental Science & Environmental Science & E</i>	10.3	82
106	Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. <i>Ecohydrology</i> , 2010 , 3, 497-508	2.5	79
105	Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. <i>Water Research</i> , 2013 , 47, 1793-802	12.5	77
104	Calcined layered double hydroxides/reduced graphene oxide composites with improved photocatalytic degradation of paracetamol and efficient oxidation-adsorption of As(III). <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 550-562	21.8	77
103	Morphology Control and Photocatalysis Enhancement by in Situ Hybridization of Cuprous Oxide with Nitrogen-Doped Carbon Quantum Dots. <i>Langmuir</i> , 2016 , 32, 9418-27	4	76
102	Quantification and characterization of dissolved organic carbon from biochars. <i>Geoderma</i> , 2019 , 335, 161-169	6.7	74
101	Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. <i>Environmental Science & Enphrology</i> , 2019 , 53, 7265-7287	10.3	73
100	Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. <i>Journal of Chromatography A</i> , 2015 , 1404, 1-9	4.5	56
99	Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. <i>Journal of Contaminant Hydrology</i> , 2014 , 164, 35-48	3.9	56

(2016-2018)

98	Experimental and theoretical investigations on Se(IV) and Se(VI) adsorption to UiO-66-based metal B rganic frameworks. <i>Environmental Science: Nano</i> , 2018 , 5, 1441-1453	7.1	55	
97	Fly-ash-amended sand as filter media in bioretention cells to improve phosphorus removal. <i>Water Environment Research</i> , 2008 , 80, 507-16	2.8	54	
96	A review of colloid transport in fractured rocks. <i>Journal of Mountain Science</i> , 2012 , 9, 770-787	2.1	53	
95	Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. <i>Water Research</i> , 2011 , 45, 1691-701	12.5	51	
94	Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. <i>Environmental Pollution</i> , 2019 , 248, 947-957	9.3	49	
93	Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. <i>Environment International</i> , 2019 , 131, 104976	12.9	48	
92	Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. <i>Water Research</i> , 2012 , 46, 2992-3004	12.5	45	
91	Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids. <i>Environmental Science & Environmental </i>	10.3	44	
90	Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. <i>Environment International</i> , 2019 , 132, 105105	12.9	44	
89	Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. <i>Langmuir</i> , 2013 , 29, 1831-40	4	44	
88	Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). <i>Journal of Hydrology</i> , 2014 , 519, 1677-1687	6	42	
87	Novel Biochar-Plant Tandem Approach for Remediating Hexachlorobenzene Contaminated Soils: Proof-of-Concept and New Insight into the Rhizosphere. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 5464-71	5.7	38	
86	Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon. <i>Environmental Pollution</i> , 2017 , 220, 1349-1358	9.3	35	
85	Colloid retention at the meniscus-wall contact line in an open microchannel. <i>Water Research</i> , 2012 , 46, 295-306	12.5	35	
84	Phytoavailability and mechanism of bound PAH residues in filed contaminated soils. <i>Environmental Pollution</i> , 2017 , 222, 465-476	9.3	33	
83	Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara. <i>Water Research</i> , 2020 , 170, 115354	12.5	33	
82	Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. <i>Environment International</i> , 2019 , 130, 104899	12.9	30	
81	Simultaneous determination of organotin pesticides by HPLC-ICP-MS and their sorption, desorption, and transformation in freshwater sediments. <i>Water Research</i> , 2016 , 95, 185-94	12.5	29	

80	Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment. <i>Science of the Total Environment</i> , 2020 , 721, 137670	10.2	28
79	Temporal changes in Aqu/C60 physical-chemical, deposition, and transport characteristics in aqueous systems. <i>Environmental Science & Environmental & Environm</i>	10.3	28
78	A coupled field study of subsurface fracture flow and colloid transport. <i>Journal of Hydrology</i> , 2015 , 524, 476-488	6	27
77	Bioavailability of Soil-Sorbed Tetracycline to Escherichia coli under Unsaturated Conditions. <i>Environmental Science & Environmental &</i>	10.3	26
76	Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength. <i>Water Resources Research</i> , 2009 , 45,	5.4	26
75	Fabrication of niobium doped titanate nanoflakes with enhanced visible-light-driven photocatalytic activity for efficient ibuprofen degradation. <i>Chinese Chemical Letters</i> , 2019 , 30, 2177-2180	8.1	25
74	Reverse engineering of biochar. <i>Bioresource Technology</i> , 2015 , 183, 163-74	11	25
73	Sorption of Lincomycin by Manure-Derived Biochars from Water. <i>Journal of Environmental Quality</i> , 2016 , 45, 519-27	3.4	25
72	Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. <i>Environment International</i> , 2019 , 131, 105031	12.9	25
71	Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 822-830	5.7	23
70	Sediments inhibit adsorption of 17 th estradiol and 17 th ethinylestradiol to carbon nanotubes and graphene oxide. <i>Environmental Science: Nano</i> , 2017 , 4, 1900-1910	7.1	23
69	A rapid screening technique for estimating nanoparticle transport in porous media. <i>Water Research</i> , 2013 , 47, 4086-94	12.5	23
68	Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. <i>Chemical Engineering Journal</i> , 2021 , 407, 127167	14.7	23
67	Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments. <i>Journal of Hazardous Materials</i> , 2016 , 310, 125-34	12.8	22
66	Potential metabolism of pharmaceuticals in radish: Comparison of inlvivo and inlvitro exposure. <i>Environmental Pollution</i> , 2018 , 242, 962-969	9.3	22
65	Effect of hydrofracking fluid on colloid transport in the unsaturated zone. <i>Environmental Science</i> & amp; Technology, 2014 , 48, 8266-74	10.3	21
64	Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. <i>Science of the Total Environment</i> , 2018 , 621, 160-167	10.2	21
63	Extracellular Polymeric Substances Acting as a Permeable Barrier Hinder the Lateral Transfer of Antibiotic Resistance Genes. <i>Frontiers in Microbiology</i> , 2019 , 10, 736	5.7	20

(2021-2013)

62	Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	20
61	Effect of Soil Reduction on Phosphorus Sorption of an Organic-Rich Silt Loam. <i>Soil Science Society of America Journal</i> , 2010 , 74, 240-249	2.5	20
60	Long-term sorption of lincomycin to biochars: The intertwined roles of pore diffusion and dissolved organic carbon. <i>Water Research</i> , 2019 , 161, 108-118	12.5	19
59	Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group. <i>Water Research</i> , 2017 , 123, 58-66	12.5	17
58	Assessing transfer of pesticide residues from chrysanthemum flowers into tea solution and associated health risks. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 187, 109859	7	16
57	Can pore-clogging by ash explain post-fire runoff?. International Journal of Wildland Fire, 2016, 25, 294	3.2	16
56	Effects of reclaimed water matrix on fate of pharmaceuticals and personal care products in soil. <i>Chemosphere</i> , 2016 , 156, 286-293	8.4	16
55	Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions. <i>Regulatory Toxicology and Pharmacology</i> , 2016 , 81, 284	-2 81 7	16
54	DNA Facilitates the Sorption of Polycyclic Aromatic Hydrocarbons on Montmorillonites. <i>Environmental Science & Environmental S</i>	10.3	15
53	Enhancement of Heavy Metals Retention in Sandy Soil by Amendment with Fly Ash. <i>Transactions of the ASABE</i> , 2008 , 51, 1247-1254	0.9	15
52	Greater microbial carbon use efficiency and carbon sequestration in soils: Amendment of biochar versus crop straws. <i>GCB Bioenergy</i> , 2020 , 12, 1092-1103	5.6	15
51	Roxarsone exposure jeopardizes nitrogen removal and regulates bacterial community in biological sequential batch reactors. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 159, 232-239	7	15
50	Plasmid binding to metal oxide nanoparticles inhibited lateral transfer of antibiotic resistance genes. <i>Environmental Science: Nano</i> , 2019 , 6, 1310-1322	7.1	14
49	Modulating cellular cytotoxicity and phototoxicity of fluorescent organic salts through counterion pairing. <i>Scientific Reports</i> , 2019 , 9, 15288	4.9	14
48	Metabolic Demethylation and Oxidation of Caffeine during Uptake by Lettuce. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 7907-7915	5.7	14
47	Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122852	12.8	13
46	Roots-Enhanced Preferential Flows in Deciduous and Coniferous Forest Soils Revealed by Dual-Tracer Experiments. <i>Journal of Environmental Quality</i> , 2019 , 48, 136-146	3.4	13
45	Different degradation mechanisms of carbamazepine and diclofenac by single-atom Barium embedded g-CN: the role of photosensitation-like mechanism. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125936	12.8	13

44	Evaluation of Two Langmuir Models for Phosphorus Sorption of Phosphorus-Enriched Soils in New York for Environmental Applications. <i>Soil Science</i> , 2009 , 174, 523-530	0.9	12
43	Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum. <i>Environmental Pollution</i> , 2020 , 257, 113499	9.3	12
42	Interactions between nanoparticles and fractal surfaces. Water Research, 2019, 151, 296-309	12.5	12
41	Transport of sodium dodecylbenzene sulfonate (SDBS)-dispersed carbon nanotubes and enhanced mobility of tetrabromobisphenol A (TBBPA) in saturated porous media. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 497, 205-213	5.1	11
40	A Fast and Easily Parallelizable Biosensor Method for Measuring Extractable Tetracyclines in Soils. <i>Environmental Science & Environmental Science & E</i>	10.3	11
39	Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. <i>Environmental Pollution</i> , 2018 , 243, 1078-1086	9.3	11
38	Species-dependent response of food crops to polystyrene nanoplastics and microplastics. <i>Science of the Total Environment</i> , 2021 , 796, 148750	10.2	11
37	Nutrient transport within three vegetative treatment areas receiving silage bunker runoff. <i>Journal of Environmental Management</i> , 2011 , 92, 587-95	7.9	10
36	The Effects of Timing of Inundation on Soil Physical Quality in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Region, China. <i>Vadose Zone Journal</i> , 2018 , 17, 180043	2.7	10
35	The impact of biofilm-forming potential and tafi production on transport of environmental Salmonella through unsaturated porous media. <i>Biologia (Poland)</i> , 2009 , 64, 460-464	1.5	9
34	Tracer movement through paired vegetative treatment areas receiving silage bunker runoff. <i>Journal of Soils and Water Conservation</i> , 2011 , 66, 18-28	2.2	9
33	Progresses and emerging trends of arsenic research in the past 120 years. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 1306-1353	11.1	9
32	Plant Root Exudates Decrease Mobility of Smectite Colloids in Porous Media in Contrast to Humic Acid. <i>Soil Science Society of America Journal</i> , 2015 , 79, 467-475	2.5	8
31	Transport and Retention of Phytophthora capsici Zoospores in Saturated Porous Media. <i>Environmental Science & Environmental Sc</i>	10.3	8
30	Effect of Clay Minerals on Transport of Surfactants Dispersed Multi-walled Carbon Nanotubes in Porous Media. <i>Acta Geologica Sinica</i> , 2017 , 91, 135-144	0.7	7
29	Nonmonotonic Effect of Montmorillonites on the Horizontal Transfer of Antibiotic Resistance Genes to Bacteria. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 421-427	11	7
28	Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment. <i>Environmental Pollution</i> , 2020 , 259, 113924	9.3	7
27	Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2020,	8.3	6

(2020-2021)

26	Bacterial community assembly and antibiotic resistance genes in the lettuce-soil system upon antibiotic exposure. <i>Science of the Total Environment</i> , 2021 , 778, 146255	10.2	6
25	Transcriptomic analysis of zebrafish (Danio rerio) embryos to assess integrated biotoxicity of Xitiaoxi River waters. <i>Environmental Pollution</i> , 2018 , 242, 42-53	9.3	6
24	Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry. <i>Chemosphere</i> , 2019 , 235, 643-650	8.4	5
23	Development of a new long-term drought resilient soil water retention technology. <i>Journal of Soils and Water Conservation</i> , 2014 , 69, 154A-160A	2.2	5
22	Comparing root concentration factors of antibiotics for lettuce (Lactuca sativa) measured in rhizosphere and bulk soils. <i>Chemosphere</i> , 2021 , 262, 127677	8.4	5
21	Organochlorinated pesticides expedite the enzymatic degradation of DNA. <i>Communications Biology</i> , 2019 , 2, 81	6.7	4
20	Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana. <i>Environmental Pollution</i> , 2022 , 292, 118448	9.3	4
19	Uptake of cephalexin by lettuce, celery, and radish from water. <i>Chemosphere</i> , 2021 , 263, 127916	8.4	4
18	Hydrogen bonding rather than cation bridging promotes graphene oxide attachment to lipid membranes in the presence of heavy metals. <i>Environmental Science: Nano</i> , 2020 , 7, 2240-2251	7.1	3
17	Advancing Soil Physics for Securing Food, Water, Soil and Ecosystem Services. <i>Vadose Zone Journal</i> , 2018 , 17, 1-7	2.7	3
16	Dynamics and sources of colloids in shallow groundwater in lowland wells and fracture flow in sloping farmland. <i>Water Research</i> , 2019 , 156, 252-263	12.5	2
15	Design and risk assessment tool for vegetative treatment areas receiving agricultural wastewater: preliminary results. <i>Journal of Environmental Management</i> , 2010 , 91, 1794-801	7.9	2
14	Rapid Sand Filtration of Recycled Irrigation Water Controlled Pythium Root Rot of Poinsettia in Greenhouse. <i>HortTechnology</i> , 2019 , 29, 578-589	1.3	2
13	Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa. <i>Aquatic Toxicology</i> , 2021 , 235, 105826	5.1	2
12	Implication of cation-bridging interaction contribution to sorption of perfluoroalkyl carboxylic acids by soils <i>Chemosphere</i> , 2021 , 290, 133224	8.4	1
11	Global syndromes induced by changes in solutes of the world barge rivers. <i>Nature Communications</i> , 2021 , 12, 5940	17.4	1
10	Predicting crop root concentration factors of organic contaminants with machine learning models. Journal of Hazardous Materials, 2022 , 424, 127437	12.8	1
9	Biochar amendment changed soil-bound fractions of silver nanoparticles and ions but not their uptake by radish at an environmentally-relevant concentration. <i>Biochar</i> , 2020 , 2, 307-317	10	1

8	Assessing Consumer Buy and Pay Preferences for Labeled Food Products with Statistical and Machine Learning Methods. <i>Journal of Food Protection</i> , 2021 , 84, 1560-1566	2.5	1
7	Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. <i>Environmental Science and Ecotechnology</i> , 2022 , 10, 100162	7.4	O
6	A comparative study on various indicators for evaluating soil health of three biochar materials application. <i>Journal of Cleaner Production</i> , 2022 , 343, 131085	10.3	O
5	NaCl salinity enhances tetracycline bioavailability to Escherichia coli on agar surfaces <i>Chemosphere</i> , 2022 , 302, 134921	8.4	O
4	Nano-goethite-mediated transformation of anthracene derivatives under low moisture conditions. <i>Environmental Science: Nano</i> , 2022 , 9, 289-301	7.1	
3	Control of Phytophthora capsici diseases in greenhouse squash by fast-flow filtration. <i>Acta Horticulturae</i> , 2020 , 247-256	0.3	
2	Fate and transport in environmental quality. <i>Journal of Environmental Quality</i> , 2021 , 50, 1282-1289	3.4	
1	Application of BiVO4Microalgae Combined Treatment to Remove High Concentration Mixture of Sulfamethazine and Sulfadiazine. <i>Water (Switzerland)</i> , 2022 , 14, 718	3	