Junichi Ikenouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3801695/publications.pdf

Version: 2024-02-01

331670 361022 3,901 35 21 35 h-index citations g-index papers 37 37 37 5269 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ZO-1 and ZO-2 Independently Determine Where Claudins Are Polymerized in Tight-Junction Strand Formation. Cell, 2006, 126, 741-754.	28.9	685
2	Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell Biology, 2005, 171, 939-945.	5.2	664
3	Regulation of tight junctions during the epithelium-mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. Journal of Cell Science, 2003, 116, 1959-1967.	2.0	584
4	Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO Journal, 2012, 31, 4106-4123.	7.8	497
5	LSR defines cell corners for tricellular tight junction formation in epithelial cells. Journal of Cell Science, 2011, 124, 548-555.	2.0	206
6	Loss of Occludin Affects Tricellular Localization of Tricellulin. Molecular Biology of the Cell, 2008, 19, 4687-4693.	2.1	172
7	Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. Journal of Cell Biology, 2007, 176, 779-786.	5. 2	151
8	Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nature Communications, 2018, 9, 2049.	12.8	127
9	FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 748-753.	7.1	80
10	EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. Journal of Cell Science, 2015, 128, 781-9.	2.0	65
11	Tricellulin regulates junctional tension of epithelial cells at tricellular contacts via Cdc42. Journal of Cell Science, 2014, 127, 4201-12.	2.0	60
12	Regulation of the epithelial barrier by post-translational modifications of tight junction membrane proteins. Journal of Biochemistry, 2018, 163, 265-272.	1.7	59
13	A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1863-71.	7.1	55
14	Adherens junctions influence tight junction formation via changes in membrane lipid composition. Journal of Cell Biology, 2018, 217, 2373-2381.	5.2	53
15	Defining the Roles of \hat{l}^2 -Catenin and Plakoglobin in LEF/T-Cell Factor-Dependent Transcription Using \hat{l}^2 -Catenin/Plakoglobin-Null F9 Cells. Molecular and Cellular Biology, 2008, 28, 825-835.	2.3	41
16	Lipid Polarity Is Maintained in Absence of Tight Junctions. Journal of Biological Chemistry, 2012, 287, 9525-9533.	3.4	41
17	Sphingomyelin clustering is essential for the formation of microvilli. Journal of Cell Science, 2013, 126, 3585-92.	2.0	41
18	α-Catenin Controls the Anisotropy of Force Distribution at Cell-Cell Junctions during Collective Cell Migration. Cell Reports, 2018, 23, 3447-3456.	6.4	39

#	Article	IF	CITATIONS
19	Coordinated changes in cell membrane and cytoplasm during maturation of apoptotic bleb. Molecular Biology of the Cell, 2020, 31, 833-844.	2.1	29
20	DAAM1 stabilizes epithelial junctions by restraining WAVE complex–dependent lateral membrane motility. Journal of Cell Biology, 2016, 215, 559-573.	5.2	28
21	CaMKII regulates the strength of the epithelial barrier. Scientific Reports, 2015, 5, 13262.	3.3	24
22	Phosphorylation state regulates the localization of Scribble at adherens junctions and its association with E-cadherin–catenin complexes. Experimental Cell Research, 2011, 317, 413-422.	2.6	22
23	Embryonic hydromyelia: cystic dilatation of the lumbosacral neural tube in human embryos. Acta Neuropathologica, 2002, 103, 248-254.	7.7	21
24	Apical membrane and junctional complex formation during simple epithelial cell differentiation of F9 cells. Genes To Cells, 2005, 10, 1065-1080.	1.2	20
25	Targeting Cholesterol in a Liquid-Disordered Environment by Theonellamides Modulates Cell Membrane Order and Cell Shape. Chemistry and Biology, 2015, 22, 604-610.	6.0	20
26	STIM-Orai1 signaling regulates fluidity of cytoplasm during membrane blebbing. Nature Communications, 2021, 12, 480.	12.8	20
27	Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin. Journal of Cell Biology, 2022, 221, .	5.2	20
28	Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers, 2018, 6, 1-8.	3.2	19
29	Membrane bleb: A seesaw game of two small GTPases. Small GTPases, 2017, 8, 85-89.	1.6	17
30	Cell Adhesion Structures in Epithelial Cells Are Formed in Dynamic and Cooperative Ways. BioEssays, 2019, 41, e1800227.	2.5	13
31	Emphatic visualization of sphingomyelin-rich domains by inter-lipid FRET imaging using fluorescent sphingomyelins. Scientific Reports, 2017, 7, 16801.	3.3	12
32	MAGIs regulate aPKC to enable balanced distribution of intercellular tension for epithelial sheet homeostasis. Communications Biology, 2021, 4, 337.	4.4	7
33	A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS Journal, 2022, 289, 7907-7917.	4.7	7
34	How do cells sense actin cortex-free membrane?. Cell Cycle, 2016, 15, 2687-2688.	2.6	1
35	mTORC2 suppresses cell death induced by hypo-osmotic stress by promoting sphingomyelin transport. Journal of Cell Biology, 2022, 221, .	5.2	1