

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3801624/publications.pdf Version: 2024-02-01

XUE INO

#	Article	IF	CITATIONS
1	Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1. Autophagy, 2022, 18, 1864-1878.	9.1	40
2	The Impact of Moderately High Preconception Thyrotropin Levels on Ovarian Reserve Among Euthyroid Infertile Women Undergoing Assisted Reproductive Technology. Thyroid, 2022, , .	4.5	3
3	Ovarian Reserve and ART Outcomes in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Patients With FOXL2 Mutations. Frontiers in Endocrinology, 2022, 13, 829153.	3.5	0
4	New theca-cell marker insulin-like factor 3 is associated with premature ovarian insufficiency. Fertility and Sterility, 2021, 115, 455-462.	1.0	8
5	Diagnostic value of dysregulated microribonucleic acids in the placenta and circulating exosomes in gestational diabetes mellitus. Journal of Diabetes Investigation, 2021, 12, 1490-1500.	2.4	24
6	Ovarian Reserve Markers in Premature Ovarian Insufficiency: Within Different Clinical Stages and Different Etiologies. Frontiers in Endocrinology, 2021, 12, 601752.	3.5	42
7	T _{reg} deficiencyâ€mediated T _H 1 response causes human premature ovarian insufficiency through apoptosis and steroidogenesis dysfunction of granulosa cells. Clinical and Translational Medicine, 2021, 11, e448.	4.0	27
8	Growth Hormone Cotreatment for Low-Prognosis Patients According to the POSEIDON Criteria. Frontiers in Endocrinology, 2021, 12, 790160.	3.5	7
9	Bifidobacterium and Lactobacillus for preventing necrotizing enterocolitis in very-low-birth-weight preterm infants: a systematic review and meta-analysis. World Journal of Pediatrics, 2020, 16, 135-142.	1.8	16
10	Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency. American Journal of Reproductive Immunology, 2020, 84, e13292.	1.2	22
11	Impact of Thyroid Autoimmunity on Ovarian Reserve, Pregnancy Outcomes, and Offspring Health in Euthyroid Women Following <i>In Vitro</i> Fertilization/Intracytoplasmic Sperm Injection. Thyroid, 2020, 30, 588-597.	4.5	18
12	Resumption of Ovarian Function After Ovarian Biopsy/Scratch in Patients With Premature Ovarian Insufficiency. Reproductive Sciences, 2019, 26, 207-213.	2.5	28
13	CAV1 regulates primordial follicle formation via the Notch2 signalling pathway and is associated with premature ovarian insufficiency in humans. Human Reproduction, 2018, 33, 2087-2095.	0.9	11
14	Molecular Genetics of Premature Ovarian Insufficiency. Trends in Endocrinology and Metabolism, 2018, 29, 795-807.	7.1	163
15	Identification of patients with primary ovarian insufficiency caused by autoimmunity. Reproductive BioMedicine Online, 2017, 35, 475-479.	2.4	8
16	D-mannose induces regulatory T cells and suppresses immunopathology. Nature Medicine, 2017, 23, 1036-1045.	30.7	153
17	Premature Ovarian Insufficiency: Phenotypic Characterization Within Different Etiologies. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2281-2290.	3.6	76
18	Mutations in MSH5 in primary ovarian insufficiency. Human Molecular Genetics, 2017, 26, 1452-1457.	2.9	87

Xue Jiao

#	Article	IF	CITATIONS
19	Transcription factor SOHLH1 potentially associated with primary ovarian insufficiency. Fertility and Sterility, 2015, 103, 548-553.e5.	1.0	28
20	Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nature Communications, 2015, 6, 8424.	12.8	135
21	Genetics of primary ovarian insufficiency: new developments and opportunities. Human Reproduction Update, 2015, 21, 787-808.	10.8	369
22	CSB-PGBD3 Mutations Cause Premature Ovarian Failure. PLoS Genetics, 2015, 11, e1005419.	3.5	70
23	Novel variants in the SOHLH2 gene are implicated in human premature ovarian failure. Fertility and Sterility, 2014, 101, 1104-1109.e6.	1.0	50
24	FMR1 Premutation Is an Uncommon Explanation for Premature Ovarian Failure in Han Chinese. PLoS ONE, 2014, 9, e103316.	2.5	26
25	Novel NR5A1 Missense Mutation in Premature Ovarian Failure: Detection in Han Chinese Indicates Causation in Different Ethnic Groups. PLoS ONE, 2013, 8, e74759.	2.5	24
26	Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Human Reproduction, 2012, 27, 2201-2207.	0.9	90
27	Inductively coupled plasma mass spectrometry for determination of total urinary protein with CdTe quantum dots label Journal of Analytical Atomic Spectrometry, 2011, 26, 2493	3.0	21