Ines M Anton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3801335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis. , 2022, , 245-270.		Ο
2	WIP, YAP/TAZ and Actin Connections Orchestrate Development and Transformation in the Central Nervous System. Frontiers in Cell and Developmental Biology, 2021, 9, 673986.	3.7	5
3	Crosstalk between WIP and Rho family GTPases. Small GTPases, 2020, 11, 1-7.	1.6	7
4	Wiskott–Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nature Medicine, 2019, 25, 130-140.	30.7	57
5	WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers, 2018, 10, 191.	3.7	17
6	Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines, 2018, 6, 29.	3.2	38
7	WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion. Scientific Reports, 2016, 6, 23590.	3.3	22
8	Neuritic complexity of hippocampal neurons depends on WIP â€mediated mTORC 1 and Abl family kinases activities. Brain and Behavior, 2015, 5, e00359.	2.2	5
9	Cancer Stem Cell-Like Phenotype and Survival Are Coordinately Regulated by Akt/FoxO/Bim Pathway. Stem Cells, 2015, 33, 646-660.	3.2	64
10	Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. Journal of Cell Science, 2014, 128, 251-65.	2.0	18
11	WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Human Molecular Genetics, 2014, 23, 4383-4395.	2.9	13
12	WIP is necessary for matrix invasion by breast cancer cells. European Journal of Cell Biology, 2014, 93, 413-423.	3.6	18
13	Integrin linked kinase (ILK) regulates podosome maturation and stability in dendritic cells. International Journal of Biochemistry and Cell Biology, 2014, 50, 47-54.	2.8	12
14	Phosphoinositide 3-kinase p85beta regulates invadopodium formation. Biology Open, 2014, 3, 924-936.	1.2	20
15	N-WASP coordinates the delivery and F-actin–mediated capture of MT1-MMP at invasive pseudopods. Journal of Cell Biology, 2012, 199, 527-544.	5.2	151
16	WIP: WASP-interacting proteins at invadopodia and podosomes. European Journal of Cell Biology, 2012, 91, 869-877.	3.6	37
17	Enteropathogenic Escherichia coli and Vaccinia Virus Do Not Require the Family of WASP-Interacting Proteins for Pathogen-Induced Actin Assembly. Infection and Immunity, 2012, 80, 4071-4077.	2.2	9
18	Role of WASP in cell polarity and podosome dynamics of myeloid cells. European Journal of Cell Biology, 2011, 90, 198-204.	3.6	52

INES M ANTON

#	Article	IF	CITATIONS
19	The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. European Journal of Cell Biology, 2011, 90, 213-223.	3.6	35
20	WIP is a chaperone for Wiskott–Aldrich syndrome protein (WASP). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 926-931.	7.1	167
21	CD44 and \hat{I}^2 3 Integrin Organize Two Functionally Distinct Actin-based Domains in Osteoclasts. Molecular Biology of the Cell, 2007, 18, 4899-4910.	2.1	135
22	A role for WASP Interacting Protein, WIP, in fibroblast adhesion, spreading and migration. International Journal of Biochemistry and Cell Biology, 2007, 39, 262-274.	2.8	14
23	WASP-interacting protein (WIP): working in polymerisation and much more. Trends in Cell Biology, 2007, 17, 555-562.	7.9	85
24	WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1α. International Immunology, 2006, 18, 221-232.	4.0	90
25	WIP: A multifunctional protein involved in actin cytoskeleton regulation. European Journal of Cell Biology, 2006, 85, 295-304.	3.6	49
26	WIP Regulates the Stability and Localization of WASP to Podosomes in Migrating Dendritic Cells. Current Biology, 2006, 16, 2337-2344.	3.9	114
27	WIP Regulates Signaling via the High Affinity Receptor for Immunoglobulin E in Mast Cells. Journal of Experimental Medicine, 2004, 199, 357-368.	8.5	53
28	WIP participates in actin reorganization and ruffle formation induced by PDGF. Journal of Cell Science, 2003, 116, 2443-2451.	2.0	63
29	WIP Deficiency Reveals a Differential Role for WIP and the Actin Cytoskeleton in T and B Cell Activation. Immunity, 2002, 16, 193-204.	14.3	163
30	WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biology, 2001, 3, 484-491.	10.3	251
31	The Human WASP-interacting Protein, WIP, Activates the Cell Polarity Pathway in Yeast. Journal of Biological Chemistry, 1999, 274, 17103-17108.	3.4	67
32	Waltzing with WASP. Trends in Cell Biology, 1999, 9, 15-19.	7.9	58
33	The Wiskott-Aldrich Syndrome Protein-interacting Protein (WIP) Binds to the Adaptor Protein Nck. Journal of Biological Chemistry, 1998, 273, 20992-20995.	3.4	121
34	A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity. Virus Research, 1996, 41, 1-9.	2.2	21
35	Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Research, 1996, 46, 111-124.	2.2	41
36	A Transmissible Gastroenteritis Coronavirus Nucleoprotein Epitope Elicits T Helper Cells That Collaborate in the in Vitro Antibody Synthesis to the Three Major Structural Viral Proteins. Virology, 1995, 212, 746-751.	2.4	31

#	Article	IF	CITATIONS
37	Development of Protection against Coronavirus Induced Diseases. Advances in Experimental Medicine and Biology, 1995, 380, 197-211.	1.6	45
38	Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus. Veterinary Microbiology, 1992, 33, 249-262.	1.9	27