Arkadiusz Gola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3801291/publications.pdf

Version: 2024-02-01

471371 501076 73 996 17 28 citations h-index g-index papers 78 78 78 653 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Meaning and Directions of Development of Personalized Production in the Era of Industry 4.0 and Industry 5.0. Lecture Notes in Mechanical Engineering, 2023, , 1-13.	0.3	13
2	The Algorithms for Robust Scheduling of Production Jobs Under Machine Failure and Variable Technological Operation Times. Lecture Notes in Mechanical Engineering, 2022, , 56-67.	0.3	2
3	A Computer Tool Using OpenModelica for Modelling CO2 Emissions in Driving Tests. Energies, 2022, 15, 995.	1.6	5
4	Pick Performance System as an IT Support for Order Completing – A Case Study. Lecture Notes in Mechanical Engineering, 2022, , 105-115.	0.3	2
5	Reducing the Total Product Cost at the Product Design Stage. Applied Sciences (Switzerland), 2022, 12, 1921.	1.3	10
6	Potential Routes to the Sustainability of the Food Packaging Industry. Sustainability, 2022, 14, 3924.	1.6	8
7	Job Scheduling Algorithm for a Hybrid MTO-MTS Production Process. IFAC-PapersOnLine, 2022, 55, 451-456.	0.5	О
8	The Role and Meaning of the Digital Twin Technology in the Process of Implementing Intelligent Collaborative Robots. Lecture Notes in Mechanical Engineering, 2022, , 39-49.	0.3	2
9	Reference model of milk-run traffic systems prototyping. International Journal of Production Research, 2021, 59, 4495-4512.	4.9	15
10	Fuzzy set theory driven maintenance sustainability performance assessment model: a multiple criteria approach. Journal of Intelligent Manufacturing, 2021, 32, 1497-1515.	4.4	33
11	A thermo-mechanical machining method for improving the accuracy and stability of the geometric shape of long low-rigidity shafts. Journal of Intelligent Manufacturing, 2021, 32, 1939-1951.	4.4	7
12	Scalability analysis of selected structures of a reconfigurable manufacturing system taking into account a reduction in machine tools reliability. Eksploatacja I Niezawodnosc, 2021, 23, 242-252.	1.1	26
13	Design and Management of Manufacturing Systems. Applied Sciences (Switzerland), 2021, 11, 2216.	1.3	12
14	A Method of Increasing the Accuracy of Controlling the Parameters of Dynamic Systems and Regulating the Parameters of the Elastic-Deformable State in the Process of Treating Low-Rigidity Shafts. Advances in Science and Technology Research Journal, 2021, 15, 26-36.	0.4	0
15	Theoretical and Experimental Identification of Frequency Characteristics and Control Signals of a Dynamic System in the Process of Turning. Materials, 2021, 14, 2260.	1.3	3
16	Influence of Various Types of Office Desk Chair for Dynamizing the Operation Assessed by Raster Stereography. Applied Sciences (Switzerland), 2021, 11, 4910.	1.3	0
17	Modelling and simulation of reconfigurable manufacturing system for machining of casing-class parts. , 2021, , .		3
18	The Use of a Genetic Algorithm for Sorting Warehouse Optimisation. Processes, 2021, 9, 1197.	1.3	11

#	Article	IF	CITATIONS
19	A fuzzy logic approach to remaining useful life control and scheduling of cooperating forklifts., 2021,,.		3
20	An Investigation into the Effect of Electro-Contact Heating in the Machining of Low-Rigidity Thin-Walled Micro-Machine Parts. Materials, 2021, 14, 4427.	1.3	0
21	A Digital Twin Approach for the Improvement of an Autonomous Mobile Robots (AMR's) Operating Environmentâ€"A Case Study. Sensors, 2021, 21, 7830.	2.1	36
22	Evaluation of the Brake's Performance Dependence Upon Technical Condition of Car Tires as a Factor of Road Safety Management. Energies, 2020, 13, 9.	1.6	14
23	Predictive Scheduling with Markov Chains and ARIMA Models. Applied Sciences (Switzerland), 2020, 10, 6121.	1.3	8
24	Control of Machining of Axisymmetric Low-Rigidity Parts. Materials, 2020, 13, 5053.	1.3	2
25	Interactive Planning of Competency-Driven University Teaching Staff Allocation. Applied Sciences (Switzerland), 2020, 10, 4894.	1.3	7
26	The Use of Neural Networks and Genetic Algorithms to Control Low Rigidity Shafts Machining. Sensors, 2020, 20, 4683.	2.1	13
27	The Use of Artificial Intelligence Methods to Assess the Effectiveness of Lean Maintenance Concept Implementation in Manufacturing Enterprises. Applied Sciences (Switzerland), 2020, 10, 7922.	1.3	35
28	Time-based machine failure prediction in multi-machine manufacturing systems. Eksploatacja I Niezawodnosc, 2020, 22, 52-62.	1.1	18
29	Predicting the Error of a Robot's Positioning Repeatability with Artificial Neural Networks. Advances in Intelligent Systems and Computing, 2020, , 41-48.	0.5	0
30	The Influence of the Packing Material Type on the Adhesive Joints Strength of the Paperboard Packages. Lecture Notes in Mechanical Engineering, 2020, , 914-925.	0.3	0
31	Structural Decomposition Approach to Design of No-Wait Cyclic Schedules for Repeatedly Operating Transport System Dedicated to Supply Loops. IFAC-PapersOnLine, 2020, 53, 10542-10549.	0.5	1
32	An Adaptive Algorithm for Multiple Part Families Manufacturing Selection in Reconfigurable Flow Lines. Communications in Computer and Information Science, 2020, , 133-144.	0.4	3
33	The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures. Sustainability, 2019, 11, 3451.	1.6	16
34	The Use of Intelligent Systems to Support the Decision-Making Process in Lean Maintenance Management. IFAC-PapersOnLine, 2019, 52, 148-153.	0.5	24
35	Maintenance 4.0 Technologies for Sustainable Manufacturing - an Overview. IFAC-PapersOnLine, 2019, 52, 91-96.	0.5	97
36	Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management. Sustainability, 2019, 11, 2799.	1.6	23

#	Article	IF	CITATIONS
37	Toxicity of Exhaust Fumes (CO, NOx) of the Compression-Ignition (Diesel) Engine with the Use of Simulation. Sustainability, 2019, 11, 2188.	1.6	22
38	Thermomechanical Treatment of Long Low-Stiffness Shafts. IFAC-PapersOnLine, 2019, 52, 136-141.	0.5	1
39	Prediction of variable technological operation times in production jobs scheduling. IFAC-PapersOnLine, 2019, 52, 1301-1306.	0.5	4
40	Clasiffication and Analysis of Typical Structures of Dynamic Systems of Machining of Low-Rigidity Shafts. IFAC-PapersOnLine, 2019, 52, 142-147.	0.5	0
41	Implementation of Low-Sensitivity Adaptive Control Systems in Machining Low-Stiffness Axisymmetric Workpieces. IFAC-PapersOnLine, 2019, 52, 79-84.	0.5	1
42	Application-based support of machine maintenance. IFAC-PapersOnLine, 2019, 52, 131-135.	0.5	13
43	Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms. Neurocomputing, 2019, 338, 381-392.	3.5	48
44	The Use of Artificial Neural Networks in Tomographic Reconstruction of Soil Embankments. Advances in Intelligent Systems and Computing, 2019, , 104-112.	0.5	0
45	Increasing the Reliability of Flood Embankments with Neural Imaging Method. Applied Sciences (Switzerland), 2018, 8, 1457.	1.3	48
46	Computational Intelligence in Control of AGV Multimodal Systems. IFAC-PapersOnLine, 2018, 51, 1421-1427.	0.5	30
47	Control of Accuracy of Forming Elastic-Deformable Shafts with Low Rigidity. Advances in Intelligent Systems and Computing, 2018, , 107-114.	0.5	3
48	Application of Fuzzy Logic and Genetic Algorithms in Automated Works Transport Organization. Advances in Intelligent Systems and Computing, 2018, , 29-36.	0.5	22
49	Integer Linear Programming in Optimization of Waste After Cutting in the Furniture Manufacturing. Advances in Intelligent Systems and Computing, 2018, , 260-270.	0.5	32
50	Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods. Eksploatacja I Niezawodnosc, 2018, 21, 90-102.	1.1	49
51	Organizacja przestrzeni skÅ,adowania dla potrzeb magazynowania Årodków ochrony roÅlin. Przemysl Chemiczny, 2018, 1, 36-40.	0.0	0
52	Micro-geometry Surface Modelling in the Process of Low-Rigidity Elastic-Deformable Shafts Turning. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2017, 41, 159-167.	0.8	14
53	Application of OEE Coefficient for Manufacturing Lines Reliability Improvement. , 2017, , .		5
54	Application of Fuzzy Logic in Assigning Workers toÂProduction Tasks. Advances in Intelligent Systems and Computing, 2016, , 505-513.	0.5	30

#	Article	IF	Citations
55	METHOD OF ACHIEVING ACCURACY OF THERMO-MECHANICAL TREATMENT OF LOW-RIGIDITY SHAFTS. Advances in Science and Technology Research Journal, 2016, 10, 62-70.	0.4	19
56	TECHNICAL AND ORGANIZATIONAL IMPROVEMENTS OF PACKAGING PRODUCTION PROCESS. Advances in Science and Technology Research Journal, 2016, 10, 182-192.	0.4	15
57	TECHNOLOGY OF HEAT TREATING-STRAIGHTENING OF LONG SHAFTS WITH LOW RIGIDITY. Advances in Science and Technology Research Journal, 2016, 10, 207-214.	0.4	1
58	Mathematical Models for Manufacturing Systems Capacity Planning and Expansion – An Overview. Applied Mechanics and Materials, 2015, 791, 125-131.	0.2	8
59	Human Resource Selection for Manufacturing System Using Petri Nets. Applied Mechanics and Materials, 2015, 791, 132-140.	0.2	7
60	A Knowledge-Based Approach to Product Concept Screening. Advances in Intelligent Systems and Computing, 2015, , 341-348.	0.5	20
61	A Predictive Model of Multi-Stage Production Planning for Fixed Time Orders. Management and Production Engineering Review, 2014, 5, 23-32.	1.4	3
62	Brief preliminary design for a method of FMS machine tools subsystem selection. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 663-664.	0.2	1
63	Accuracy Control in the Machining of Low Rigidity Shafts. Applied Mechanics and Materials, 0, 613, 357-367.	0.2	31
64	Dynamic System of Grinding of Low-Rigidity Shafts. Applied Mechanics and Materials, 0, 791, 281-289.	0.2	1
65	Optimal Production Planning for a Random Horizon. Applied Mechanics and Materials, 0, 791, 63-69.	0.2	0
66	Perspective and Methods of Human-Industrial Robots Cooperation. Applied Mechanics and Materials, 0, 791, 178-183.	0.2	4
67	Analysis of the Process of Turning of Low-Rigidity Shafts. Applied Mechanics and Materials, 0, 791, 238-245.	0.2	8
68	Simulation Based Analysis of Reconfigurable Manufacturing System Configurations. Applied Mechanics and Materials, 0, 844, 50-59.	0.2	9
69	Modelling Characteristics Turning Processing for Want of Management by an Elastic Deformed Condition. Applied Mechanics and Materials, 0, 844, 109-114.	0.2	1
70	Virtual Designing of Robotic Workstations. Applied Mechanics and Materials, 0, 844, 31-37.	0.2	2
71	Application of survival function in robust scheduling of production jobs. , 0, , .		21
72	Risk-based estimation of manufacturing order costs with artificial intelligence. , 0, , .		25

ARTICLE IF CITATIONS

73 Job-shop scheduling with machine breakdown prediction under completion time constraint.,0,,. 6