
Rosângela Bergamasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3800904/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 2019, 222, 766-780.	8.2	355
2	Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 2019, 208, 656-665.	9.3	247
3	Magnetic MnFe 2 O 4 –graphene hybrid composite for efficient removal of glyphosate from water. Chemical Engineering Journal, 2016, 295, 391-402.	12.7	234
4	The use of Moringa oleifera as a natural coagulant in surface water treatment. Chemical Engineering Journal, 2017, 313, 226-237.	12.7	162
5	Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Science of the Total Environment, 2019, 664, 222-229.	8.0	155
6	Monolayer–multilayer adsorption phenomenological model: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 2016, 284, 1328-1341.	12.7	136
7	Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 2018, 171, 85-97.	9.3	131
8	Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology, 2017, 180, 114-124.	7.9	126
9	Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, 2019, 219, 809-817.	9.3	107
10	Study of the Effect of Saline Solution on the Extraction of the Moringa oleifera Seed's Active Component for Water Treatment. Water, Air, and Soil Pollution, 2010, 211, 409-415.	2.4	103
11	Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: A review on composite adsorbents for the removal of water contaminants. International Journal of Biological Macromolecules, 2020, 164, 2535-2549.	7.5	93
12	Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 2015, 276, 166-173.	12.7	91
13	Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue. Materials Letters, 2019, 257, 126685.	2.6	89
14	Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. Science of the Total Environment, 2020, 748, 141527.	8.0	88
15	Use of Moringa oleifera Seed as a Natural Adsorbent for Wastewater Treatment. Water, Air, and Soil Pollution, 2010, 206, 273-281.	2.4	82
16	Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of the Total Environment, 2021, 789, 147957.	8.0	74
17	Acetaminophen adsorption using a lowâ€cost adsorbent prepared from modified residues of <i>Moringa oleifera</i> Lam. seed husks. Journal of Chemical Technology and Biotechnology, 2019, 94, 3147-3157.	3.2	71
18	Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 2016, 23, 7692-7700.	5.3	64

#	Article	IF	CITATIONS
19	A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Chemical Engineering Research and Design, 2021, 147, 405-420.	5.6	62
20	Removing PFAS from aquatic systems using natural and renewable material-based adsorbents: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105271.	6.7	62
21	Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. Journal of Environmental Chemical Engineering, 2018, 6, 4084-4092.	6.7	54
22	Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. Journal of Environmental Chemical Engineering, 2020, 8, 103618.	6.7	54
23	Soybean hulls as a low ost biosorbent for removal of methylene blue contaminant. Environmental Progress and Sustainable Energy, 2020, 39, e13328.	2.3	53
24	Development of α- and γ-Fe ₂ O ₃ decorated graphene oxides for glyphosate removal from water. Environmental Technology (United Kingdom), 2019, 40, 1118-1137.	2.2	51
25	Activated hydrochar produced from brewer's spent grain and its application in the removal of acetaminophen. Bioresource Technology, 2020, 310, 123399.	9.6	50
26	Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles. Environmental Technology (United Kingdom), 2017, 38, 2058-2069.	2.2	45
27	Evaluation of Magnetic Coagulant (α-Fe2O3-MO) and its Reuse in Textile Wastewater Treatment. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	45
28	Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Chemical Engineering Research and Design, 2020, 134, 140-148.	5.6	45
29	Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass. Chemosphere, 2017, 172, 373-383.	8.2	44
30	Metformin environmental exposure: A systematic review. Environmental Toxicology and Pharmacology, 2021, 83, 103588.	4.0	44
31	Biosorption of binary heavy metal systems: Phenomenological mathematical modeling. Chemical Engineering Journal, 2017, 313, 364-373.	12.7	42
32	Green technologies for cyanobacteria and natural organic matter water treatment using natural based products. Journal of Cleaner Production, 2017, 162, 484-490.	9.3	41
33	Evaluation of extracts of Moringa oleifera Lam seeds obtained with NaCl and their effects on water treatment. Acta Scientiarum - Technology, 2012, 34, .	0.4	40
34	Presence of endocrine disrupting chemicals in sanitary landfill leachate, its treatment and degradation by Fenton based processes: A review. Chemical Engineering Research and Design, 2019, 131, 255-267.	5.6	40
35	Performance of a hybrid coagulation/flocculation process followed by modified microfiltration membranes for the removal of solophenyl blue dye. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108577.	3.6	40
36	Iron-oxide nanoparticles by the green synthesis method using <i>Moringa oleifera</i> leaf extract for fluoride removal. Environmental Technology (United Kingdom), 2018, 39, 2926-2936.	2.2	38

#	Article	IF	CITATIONS
37	Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from <i>Punica granatum</i> leaf extract. Environmental Technology (United Kingdom), 2022, 43, 3047-3063.	2.2	38
38	Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water. Chemosphere, 2020, 247, 125852.	8.2	37
39	Environmentally friendly biosorbents (husks, pods and seeds) from <i>Moringa oleifera</i> for Pb(II) removal from contaminated water. Environmental Technology (United Kingdom), 2017, 38, 3145-3155.	2.2	36
40	Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Materials Research, 2018, 21, .	1.3	35
41	Adsorption of non-steroidal anti-inflammatory drug (NSAID) by agro-industrial by-product with chemical and thermal modification: Adsorption studies and mechanism. Industrial Crops and Products, 2021, 161, 113200.	5.2	34
42	Adsorption of sodium diclofenac in aqueous medium using graphene oxide nanosheets. Environmental Technology (United Kingdom), 2021, 42, 2599-2609.	2.2	33
43	Assessment of the use of <i>Moringa oleifera</i> seed husks for removal of pesticide diuron from contaminated water. Environmental Technology (United Kingdom), 2020, 41, 191-201.	2.2	33
44	Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. Chemosphere, 2022, 289, 133213.	8.2	33
45	Potential effect of chemical and thermal treatment on the Kinetics, equilibrium, and thermodynamic studies for atrazine biosorption by the <i>Moringa oleifera</i> pods. Canadian Journal of Chemical Engineering, 2017, 95, 961-973.	1.7	32
46	Moringa oleifera biomass residue for the removal of pharmaceuticals from water. Journal of Environmental Chemical Engineering, 2018, 6, 7192-7199.	6.7	32
47	Influence evaluation of the functionalization of magnetic nanoparticles with a natural extract coagulant in the primary treatment of a dairy cleaning-in-place wastewater. Journal of Cleaner Production, 2020, 243, 118634.	9.3	32
48	Acetaminophen removal by calcium alginate/activated hydrochar composite beads: Batch and fixed-bed studies. International Journal of Biological Macromolecules, 2022, 203, 553-562.	7.5	32
49	Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process. Environmental Technology (United Kingdom), 2015, 36, 496-506.	2.2	31
50	Green synthesis of copper oxide nanoparticles impregnated on activated carbon using <i>Moringa oleifera</i> leaves extract for the removal of nitrates from water. Canadian Journal of Chemical Engineering, 2018, 96, 2378-2386.	1.7	31
51	Synthesis and performance evaluation of a magnetic biocoagulant in the removal of reactive black 5 dye in aqueous medium. Materials Science and Engineering C, 2021, 119, 111523.	7.3	31
52	Phenomenological mathematical modeling of heavy metal biosorption in fixed-bed columns. Chemical Engineering Journal, 2017, 326, 389-400.	12.7	29
53	Chick-Watson kinetics of virus inactivation with granular activated carbon modified with silver nanoparticles and/or copper oxide. Chemical Engineering Research and Design, 2018, 117, 33-42.	5.6	29
54	Ultrafiltration Combined with Coagulation/Flocculation/Sedimentation Using Moringa oleifera as Coagulant to Treat Dairy Industry Wastewater. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	28

#	Article	IF	CITATIONS
55	Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. Environmental Science and Pollution Research, 2020, 27, 12192-12201.	5.3	28
56	Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: optimization of operational conditions and reuse evaluation. , 0, 106, 226-237.		28
57	Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. Journal of Environmental Chemical Engineering, 2020, 8, 104191.	6.7	27
58	Modified <i>Moringa oleifera</i> Lam. Seed husks as low-cost biosorbent for atrazine removal. Environmental Technology (United Kingdom), 2021, 42, 1092-1103.	2.2	27
59	Application of a novel low-cost adsorbent functioned with iron oxide nanoparticles for the removal of triclosan present in contaminated water. Microporous and Mesoporous Materials, 2021, 325, 111328.	4.4	27
60	Adsorption of cephalexin in aqueous media by graphene oxide: kinetics, isotherm, and thermodynamics. Environmental Science and Pollution Research, 2020, 27, 4725-4736.	5.3	26
61	Membrane surface functionalization by the deposition of polyvinyl alcohol and graphene oxide for dyes removal and treatment of a simulated wastewater. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108725.	3.6	26
62	Evaluation of a magnetic coagulant based on Fe ₃ O ₄ nanoparticles and <i>Moringa oleifera</i> extract on tartrazine removal: coagulation-adsorption and kinetics studies. Environmental Technology (United Kingdom), 2020, 41, 1648-1663.	2.2	24
63	Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture. Journal of Environmental Chemical Engineering, 2021, 9, 104914.	6.7	23
64	Improvement of the coagulation/flocculation process using a combination of <i>Moringa oleifera</i> Lam with anionic polymer in water treatment. Environmental Technology (United) Tj ETQq0 0 0 rgB	T /O 2e2 lock	e 102⊡f 50 377
65	Graphene oxide impregnated with iron oxide nanoparticles for the removal of atrazine from the aqueous medium. Separation Science and Technology, 2019, 54, 2653-2670.	2.5	22
66	Fluoride Removal from Water Using Combined Moringa oleifera/Ultrafiltration Process. Water, Air, and Soil Pollution, 2012, 223, 6083-6093.	2.4	21
67	Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process. Environmental Technology (United Kingdom), 2013, 34, 653-661.	2.2	21
68	Desirability function applied to the optimization of the Photoperoxi-Electrocoagulation process conditions in the treatment of tannery industrial wastewater. Journal of Water Process Engineering, 2018, 23, 207-216.	5.6	21
69	Protein fractionation of <i>Moringa oleifera</i> Lam. seeds and functionalization with magnetic particles for the treatment of reactive black 5 solution. Canadian Journal of Chemical Engineering, 2019, 97, 2309-2317.	1.7	21
70	Investigation of <i>Citrus reticulata</i> peels as an efficient and low-cost adsorbent for the removal of safranin orange dye. Environmental Technology (United Kingdom), 2022, 43, 4315-4329.	2.2	21
71	Anaerobic Digestion from Residue of Industrial Cassava Industrialization with Acidogenic and Methanogenic Physical Separation Phases. Applied Biochemistry and Biotechnology, 2000, 84-86, 809-820.	2.9	20
72	Activated carbon of Babassu coconut impregnated with copper nanoparticles by green synthesis for the removal of nitrate in aqueous solution. Environmental Technology (United Kingdom), 2018, 39, 1994-2003.	2.2	20

#	Article	IF	CITATIONS
73	Removal of natural organic matter and trihalomethane minimization by coagulation/flocculation/filtration using a natural tannin. Desalination and Water Treatment, 2016, 57, 5406-5415.	1.0	19
74	Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants—a short review. Environmental Science and Pollution Research, 2021, 28, 23610-23633.	5.3	19
75	Simplified synthesis of new GO-α-γ-Fe2O3-Sh adsorbent material composed of graphene oxide decorated with iron oxide nanoparticles applied for removing diuron from aqueous medium. Journal of Environmental Chemical Engineering, 2020, 8, 103903.	6.7	19
76	Copper Biosorption by Biomass of Marine Alga: Study of Equilibrium and Kinetics in Batch System and Adsorption/Desorption Cycles in Fixed Bed Column. Water, Air, and Soil Pollution, 2010, 213, 15-26.	2.4	18
77	Removal of excess fluoride from groundwater using natural coagulant <i>Moringa oleifera</i> Lam and microfiltration. Canadian Journal of Chemical Engineering, 2015, 93, 37-45.	1.7	18
78	Caffeine removal by chitosan/activated carbon composite beads: Adsorption in tap water and synthetic hospital wastewater. Chemical Engineering Research and Design, 2022, 184, 1-12.	5.6	18
79	Bisfenol A adsorption using a low-cost adsorbent prepared from residues of babassu coconut peels. Environmental Technology (United Kingdom), 2021, 42, 2372-2384.	2.2	17
80	Low ost biosorbent based on <i>Moringa oleifera</i> residues for herbicide atrazine removal in a fixedâ€bed column. Canadian Journal of Chemical Engineering, 2018, 96, 1468-1478.	1.7	16
81	Adsorption Kinetics of Blue 5G Dye from Aqueous Solution on Dead Floating Aquatic Macrophyte: Effect of pH, Temperature, and Pretreatment. Water, Air, and Soil Pollution, 2012, 223, 4369-4381.	2.4	15
82	Application of graphene nanosheet oxide for atrazine adsorption in aqueous solution: synthesis, material characterization, and comprehension of the adsorption mechanism. Environmental Science and Pollution Research, 2021, 28, 5731-5741.	5.3	15
83	Oxidative degradation and mineralization of the endocrine disrupting chemical bisphenol-A by an eco-friendly system based on UV-solar/H2O2 with reduction of genotoxicity and cytotoxicity levels. Science of the Total Environment, 2021, 770, 145296.	8.0	15
84	Green nanoparticles in water treatment: A review of research trends, applications, environmental aspects and large-scale production. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100526.	2.9	15
85	Otimização dos tempos de mistura e decantação no processo de coagulação/floculação da água bru por meio da Moringa oleifera Lam. Acta Scientiarum - Technology, 2008, 30, .	ta 0.4	14
86	Inhibition and removal of staphylococcal biofilms using Moringa oleifera Lam. aqueous and saline extracts. Journal of Environmental Chemical Engineering, 2018, 6, 2011-2016.	6.7	14
87	Biopolymer extracted from <i>Moringa oleifera</i> Lam. in conjunction with graphene oxide to modify membrane surfaces. Environmental Technology (United Kingdom), 2020, 41, 3069-3080.	2.2	13
88	Functionalized magnetite nanoparticles with <i>Moringa oleifera</i> with potent antibacterial action in wastewater. Environmental Technology (United Kingdom), 2021, 42, 4296-4305.	2.2	13
89	Trihalomethanes minimization in drinking water by coagulation/flocculation/sedimentation with natural coagulant <i>Moringa oleifera</i> Lam and activated carbon filtration. Canadian Journal of Chemical Engineering, 2016, 94, 1277-1284.	1.7	12
90	Investigation of <i>Moringa oleifera</i> seeds as effective and low-cost adsorbent to remove yellow dye tartrazine in fixed-bed column. Separation Science and Technology, 2020, 55, 13-25.	2.5	12

#	Article	IF	CITATIONS
91	Facile filtration system to remove Diuron in aqueous solutions. Journal of Hazardous Materials, 2021, 404, 124163.	12.4	12
92	Synthesis, Characterization and Application of ZrCl4-Graphene Composite Supported on Activated Carbon for Efficient Removal of Fluoride to Obtain Drinking Water. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	11
93	<i>Moringa oleifera</i> Lam. and Its Potential Association with Aluminium Sulphate in the Process of Coagulation/Flocculation and Sedimentation of Surface Water. International Journal of Chemical Engineering, 2018, 2018, 1-6.	2.4	11
94	Combined water treatment with extract of natural Moringa oleifera Lam and synthetic coagulant. Revista Ambiente & Ãgua, 2018, 13, 1.	0.3	11
95	Natural Extract of Moringa oleifera Leaves Promoting Control of Staphylococcus aureus strains biofilm on PVC surface. Food and Bioprocess Technology, 2020, 13, 1817-1832.	4.7	11
96	Efficient performance of copper oxide nanoparticles synthesized with pomegranate leaf extract for neutral red dye adsorption. Environmental Progress and Sustainable Energy, 2022, 41, .	2.3	11
97	Mathematical modelling applied to the rate-limiting mass transfer step determination of a herbicide biosorption onto fixed-bed columns. Environmental Technology (United Kingdom), 2020, 41, 638-648.	2.2	10
98	Hydrogels produced from natural polymers: a review on its use and employment in water treatment. Brazilian Journal of Chemical Engineering, 2023, 40, 23-38.	1.3	10
99	Potential of <i>Salvinia auriculata</i> biomass as biosorbent of the Cr(III): directed chemical treatment, modeling and sorption mechanism study. Environmental Technology (United Kingdom), 2017, 38, 1474-1488.	2.2	9
100	Potential of the <i>Moringa oleifera</i> saline extract for the treatment of dairy wastewater: application of the response surface methodology. Environmental Technology (United Kingdom), 2019, 40, 2290-2299.	2.2	9
101	Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environmental Science and Pollution Research, 2020, 27, 6088-6102.	5.3	9
102	Graphene oxide functionalized with cobalt ferrites applied to the removal of bisphenol A: ionic study, reuse capacity and desorption kinetics. Environmental Technology (United Kingdom), 2022, 43, 1388-1404.	2.2	9
103	Application of Moringa oleifera Lam. fractionated proteins for inactivation of Escherichia coli from water. Water Science and Technology, 2020, 81, 265-273.	2.5	9
104	Investigation of two new low-cost adsorbents functionalized with magnetic nanoparticles for the efficient removal of triclosan and a synthetic mixture. Environmental Science and Pollution Research, 2022, 29, 46813-46829.	5.3	9
105	Assessment of quinoxyfen phototransformation pathways by liquid chromatography coupled to accurate mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 2981-2991.	3.7	8
106	Activated carbon impregnation with ag and cu composed nanoparticles for escherichia coli contaminated water treatment. Canadian Journal of Chemical Engineering, 2019, 97, 2408-2418.	1.7	8
107	Analysis of the influence of natural adsorbent functionalization (<i>Moringa oleifera</i>) for Pb(II) removal from contaminated water. Environmental Progress and Sustainable Energy, 2020, 39, e13318.	2.3	8
108	Diclofenac adsorption using a low-cost adsorbent derived from Guazuma ulmifolia Lam. fruit via chemical and thermal treatment. Journal of Environmental Chemical Engineering, 2021, 9, 106629.	6.7	8

#	Article	IF	CITATIONS
109	Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts, 2022, 12, 745.	3.5	8
110	Development of a new vacuum impregnation method at room atmosphere to produce silver–copper oxide nanoparticles on activated carbon for antibacterial applications. Environmental Technology (United Kingdom), 2020, 41, 2400-2411.	2.2	7
111	Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environmental Technology (United Kingdom), 2021, 42, 351-357.	2.2	7
112	Discolouration of contaminated water with textile dye through a combined coagulation/flocculation and membrane separation process with different natural coagulants extracted from <scp> <i>Moringa oleifera</i> </scp> <i>Lam</i> . seeds. Canadian Journal of Chemical Engineering, 2021, 99, 1976-1983.	1.7	6
113	Physico-chemical and electrostatic surface characterisation of mica mineral and its applicability on the adsorption of Safranin Orange and Reactive Black 5 dyes. Environmental Technology (United) Tj ETQq1 1 0.78	3423114 rgB	T¢Overlock
114	Optimization of process conditions in water treatment through coagulation diagrams, using <i>Moringa oleifera</i> Lam and aluminium sulphate. Desalination and Water Treatment, 2015, 56, 1787-1792.	1.0	5
115	Groundwater nitrate contamination: Assessment and treatment using <i>Moringa oleifera</i> Lam. seed extract and activated carbon filtration. Canadian Journal of Chemical Engineering, 2016, 94, 725-732.	1.7	5
116	Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode. Environmental Science and Pollution Research, 2018, 25, 21544-21554.	5.3	5
117	The use of Moringa oleifera seeds and their fractionated proteins for Microcystis aeruginosa and microcystin‣R removal from water. Canadian Journal of Chemical Engineering, 2019, 97, 1307-1316.	1.7	5
118	Process Performance Combining Natural Coagulant Moringa oleifera Lam and Ultrafiltration for Groundwater Defluoridation. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	5
119	<i>Moringa oleifera</i> seed oil extracted by pressurized <i>n</i> -propane and its effect against <i>Staphylococcus aureus</i> biofilms. Environmental Technology (United Kingdom), 2023, 44, 1083-1098.	2.2	5
120	Groundwater quality monitoring of the Serra Geral aquifer in Toledo, Brazil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 1243-1252.	1.7	4
121	A tubular ceramic membrane coated with TiO2-P25 for radial addition of H2O2 towards AMX removal from synthetic solutions and secondary urban wastewater. Environmental Science and Pollution Research, 2022, 29, 42120-42129.	5.3	4
122	Evaluation of the genotoxic and cytotoxic effects of exposure to the herbicide 2,4-dichlorophenoxyacetic acid in Astyanax lacustris (Pisces, Characidae) and the potential for its removal from contaminated water using a biosorbent. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2021, 865, 503335.	1.7	4
123	Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology, 2021, 148, 1447-1457.	1.5	4
124	Influence of bionanoparticles to treat a slaughterhouse wastewater. Environmental Technology (United Kingdom), 2022, 43, 4528-4544.	2.2	4
125	APLICAÇÃ f O DE MORINGA OLEIFERA LAM NO TRATAMENTO DE EFLUENTE PROVENIENTE DA LAVAGEM DE JEANS. E-xacta, 2012, 5, .	0.1	4
126	AVALIAĂ‡ĂƒO DO TEMPO DE DEGRADAĂ‡ĂƒO DO COAGULANTE NATURAL MORINGA OLEIFERA LAM EM PĂ" NO TRATAMENTO DE ĂGUA SUPERFICIAL. E-xacta, 2014, 7, .	0.1	4

#	Article	IF	CITATIONS
127	Improvement of adsorption conditions of different parts of Moringa oleifera on the perception of diuron removal from contaminated waters. , 0, 171, 331-343.		4
128	Remoção do herbicida glifosato utilizando carvão ativado impregnado com compostos metálicos de prata e cobre para a melhoria da qualidade da água. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2016, 20, 450.	0.0	3
129	Hydrogel Applications to Microbiological Water Treatment. Separation and Purification Reviews, 2023, 52, 155-163.	5.5	3
130	The â€~chimie douce' process towards the modification of natural zeolites for removing drugs and pesticides from water. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	3
131	A novel magnetic adsorbent from activated carbon fiber and iron oxide nanoparticles for 2,4-D removal from aqueous medium. Environmental Technology (United Kingdom), 2023, 44, 4219-4237.	2.2	3
132	Adsorption study of heavy metals in aqueous solutions aiming at the treatment of contaminated groundwater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 1400-1411.	1.7	2
133	A simple and effective method for Escherichia coli inactivation in aqueous medium using natural based superparamagnetic coagulant. Environmental Progress and Sustainable Energy, 2021, 40, e13503.	2.3	2
134	Layerâ€byâ€layer selfâ€assembly of polyethersulphone microfiltration membranes for dye removal and flux recovery improvement. Canadian Journal of Chemical Engineering, 2022, 100, 1920-1929.	1.7	2
135	Evaluation of diazepam adsorption in aqueous media using low-cost and natural zeolite: equilibrium and kinetics. Environmental Science and Pollution Research, 2022, 29, 79808-79815.	5.3	2
136	Low-cost adsorbent prepared from soybean hulls residues as potential alternative for cationic dyes removal. Journal of Dispersion Science and Technology, 2023, 44, 2034-2044.	2.4	2
137	Analysis of herbicide biosorption by means of a phenomenological mathematical distributed parameter model. Environmental Technology (United Kingdom), 2020, , 1-8.	2.2	1
138	OTIMIZAÇÃO DAS CONDIÇÕES DE OPERAÇÃO NO PROCESSO DE CLARIFICAÇÃO DE Ã&UA SUPERFICIAL MEIO DA ASSOCIAÇÃO DOS COAGULANTES Moringa oleifera Lam E CLORETO FÉRRICO. Periódico Eletrônico Fórum Ambiental Da Alta Paulista, 2014, 9, .	POR 0.0	1
139	Impact of biodiesel production on wastewater generation. Engenharia Sanitaria E Ambiental, 2022, 27, 235-244.	0.5	1
140	Performance Evaluation of a Hybrid Enhanced Membrane Bioreactor (eMBR) System Treating Synthetic Textile Effluent. Water (Switzerland), 2022, 14, 1708.	2.7	1
141	Life performance evaluation of lyophilized Moringa biocoagulant: An alternative for prolonging the biocoagulant efficiency. Environmental Progress and Sustainable Energy, 2021, 40, e13538.	2.3	0
142	Development of a prototype for the treatment of ater contaminated with glyphosate. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 0, 23, 2.	0.0	0
143	EVALUATION OF THE PRESENCE OF NITRATE AND ITS REMOVAL IN WATERS FROM GROUNDWATER SOURCES IN MARINGÕPR. Revista CientÃfica FAEMA, 2020, 10, 84-94.	0.1	0
144	Valorization of soybean oil residue through advanced technology of graphene oxide modified membranes for tocopherol recovery. Canadian Journal of Chemical Engineering, 2022, 100, 3736-3749.	1.7	0

#	Article	IF	CITATIONS
145	Okara and okara modified and functionalized with iron oxide nanoparticles for the removal of <i>Microcystis aeruginosa</i> and cyanotoxin. Environmental Technology (United Kingdom), 2023, 44, 2737-2752.	2.2	0
146	Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environmental Technology (United Kingdom), 2023, 44, 3949-3964.	2.2	0
147	Removal of copper ions from alembic <i>cachaça</i> using agro-industrial residues as biosorbents. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 0, , 1-15.	2.3	0