Ziv Hameiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3800802/publications.pdf

Version: 2024-02-01

214 papers 2,971 citations

257450 24 h-index 197818 49 g-index

217 all docs

217 docs citations

217 times ranked 3225 citing authors

#	Article	IF	CITATIONS
1	Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018, 3, 764-772.	39.5	623
2	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	19.5	186
3	Industrially feasible, dopantâ€free, carrierâ€selective contacts for highâ€efficiency silicon solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 896-904.	8.1	137
4	Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1978-1984.	17.4	130
5	Carrier-Induced Degradation in Multicrystalline Silicon: Dependence on the Silicon Nitride Passivation Layer and Hydrogen Released During Firing. IEEE Journal of Photovoltaics, 2018, 8, 413-420.	2.5	77
6	Outdoor photoluminescence imaging of photovoltaic modules with sunlight excitation. Progress in Photovoltaics: Research and Applications, 2018, 26, 69-73.	8.1	77
7	Dopantâ€Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. Advanced Energy Materials, 2019, 9, 1803367.	19.5	77
8	Photoluminescence and electroluminescence imaging of perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1697-1705.	8.1	76
9	Laser induced defects in laser doped solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 391-405.	8.1	70
10	PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review. Solar Rrl, 2022, 6, .	5.8	65
11	Recombination parameters of lifetime-limiting carrier-induced defects in multicrystalline silicon for solar cells. Applied Physics Letters, 2017, 110, .	3.3	58
12	Influence of laser power on the properties of laser doped solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1085-1094.	6.2	55
13	Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nature Energy, 2021, 6, 194-202.	39.5	52
14	Lessons Learnt from Spatially Resolved Electro―and Photoluminescence Imaging: Interfacial Delamination in CH ₃ NH ₃ Pbl ₃ Planar Perovskite Solar Cells upon Illumination. Advanced Energy Materials, 2017, 7, 1602111.	19.5	50
15	Interlaboratory Study of Eddy-Current Measurement of Excess-Carrier Recombination Lifetime. IEEE Journal of Photovoltaics, 2014, 4, 525-531.	2.5	49
16	Low-Absorbing and Thermally Stable Industrial Silicon Nitride Films With Very Low Surface Recombination. IEEE Journal of Photovoltaics, 2017, 7, 996-1003.	2.5	46
17	The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells. Renewable Energy, 2015, 78, 590-598.	8.9	41
18	On the impact of dark annealing and room temperature illumination on p-type multicrystalline silicon wafers. Solar Energy Materials and Solar Cells, 2019, 189, 166-174.	6.2	37

#	Article	IF	CITATIONS
19	Enhanced Holeâ€Carrier Selectivity in Wide Bandgap Halide Perovskite Photovoltaic Devices for Indoor Internet of Things Applications. Advanced Functional Materials, 2021, 31, 2008908.	14.9	31
20	Spatially resolved electrical parameters of silicon wafers and solar cells by contactless photoluminescence imaging. Applied Physics Letters, 2013, 102, .	3.3	28
21	18.7% efficient laser-doped solar cell on p-type Czochralski silicon. Applied Physics Letters, 2010, 97, 222111.	3.3	27
22	Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. Journal of Applied Physics, 2016, 120, .	2.5	27
23	Outdoor photoluminescence imaging of solar panels by contactless switching: Technical considerations and applications. Progress in Photovoltaics: Research and Applications, 2020, 28, 217-228.	8.1	26
24	Solar Cell Cracks and Finger Failure Detection Using Statistical Parameters of Electroluminescence Images and Machine Learning. Applied Sciences (Switzerland), 2020, 10, 8834.	2.5	26
25	Comparative study of amorphous indium tin oxide prepared by pulsed-DC and unbalanced RF magnetron sputtering at low power and low temperature conditions for heterojunction silicon wafer solar cell applications. Vacuum, 2015, 119, 68-76.	3.5	24
26	Hydrogen-Induced Degradation., 2018,,.		24
27	Photoluminescence Imaging of Silicon Wafers and Solar Cells With Spatially Inhomogeneous Illumination. IEEE Journal of Photovoltaics, 2017, 7, 1087-1091.	2.5	23
28	Imaging the local ideality factor by contactless photoluminescence measurement. Applied Physics Letters, 2013, 103, 023501.	3.3	22
29	Extracting Metal Contact Recombination Parameters From Effective Lifetime Data. IEEE Journal of Photovoltaics, 2018, 8, 1413-1420.	2.5	22
30	Improvement of Csâ€(FAPbl ₃) _{0.85} (MAPbBr ₃) _{0.15} Quality Via DMSOâ€Moleculeâ€Control to Increase the Efficiency and Boost the Longâ€Term Stability of 1 cm ² Sized Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800338.	5.8	21
31	Rear junction laser doped solar cells on CZ n-type silicon. , 2009, , .		19
32	Evaluation of recombination processes using the local ideality factor of carrier lifetime measurements. Solar Energy Materials and Solar Cells, 2013, 117, 251-258.	6.2	19
33	Impact of Dark Annealing on the Kinetics of Light- and Elevated-Temperature-Induced Degradation. IEEE Journal of Photovoltaics, 2018, 8, 1494-1502.	2.5	19
34	Degradation of Surface Passivation and Bulk in p-Type Monocrystalline Silicon Wafers at Elevated Temperature. IEEE Journal of Photovoltaics, 2019, 9, 97-105.	2.5	19
35	Deposition temperature independent excellent passivation of highly boron doped silicon emitters by thermal atomic layer deposited Al2O3. Journal of Applied Physics, 2013, 114, 094505.	2.5	18
36	Boron-Oxygen Defect Formation Rates and Activity at Elevated Temperatures. Energy Procedia, 2016, 92, 791-800.	1.8	18

3

#	Article	IF	CITATIONS
37	Degradation and Recovery of <i>n</i> -Type Multi-Crystalline Silicon Under Illuminated and Dark Annealing Conditions at Moderate Temperatures. IEEE Journal of Photovoltaics, 2019, 9, 355-363.	2.5	17
38	Advantages of photoplating for laser doped solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 511-516.	8.1	16
39	Characterisation and Optimisation of Indium Tin Oxide Films Deposited by Pulsed DC Magnetron Sputtering for Heterojunction Silicon Wafer Solar Cell Applications. Energy Procedia, 2013, 33, 91-98.	1.8	16
40	An advanced software suite for the processing and analysis of silicon luminescence images. Computer Physics Communications, 2017, 215, 223-234.	7.5	16
41	Luminescence Imaging Characterization of Perovskite Solar Cells: A Note on the Analysis and Reporting the Results. Advanced Energy Materials, 2018, 8, 1702256.	19.5	16
42	Effective bulk doping concentration of diffused and undiffused silicon wafers obtained from combined photoconductance and photoluminescence measurements. Progress in Photovoltaics: Research and Applications, 2013, 21, 942-949.	8.1	15
43	Influence of discharge power and annealing temperature on the properties of indium tin oxide thin films prepared by pulsed-DC magnetron sputtering. Vacuum, 2015, 121, 187-193.	3.5	15
44	Comparison of Terminal and Implied Open-Circuit Voltage Measurements. IEEE Journal of Photovoltaics, 2017, 7, 1376-1383.	2.5	15
45	18.7% Efficient inline-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back. Solar Energy Materials and Solar Cells, 2013, 117, 412-420.	6.2	14
46	Novel Hybrid Electrode Using Transparent Conductive Oxide and Silver Nanoparticle Mesh for Silicon Solar Cell Applications. Energy Procedia, 2014, 55, 670-678.	1.8	14
47	Temperature Sensitivity of Multicrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 957-964.	2.5	14
48	Reassessments of Minority Carrier Traps in Silicon With Photoconductance Decay Measurements. IEEE Journal of Photovoltaics, 2019, 9, 652-659.	2.5	14
49	Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts. Solar Energy Materials and Solar Cells, 2021, 225, 111020.	6.2	14
50	Dielectric Charge Tailoring in PECVD SiO <inline-formula> <tex-math>\${}_x\$</tex-math> </inline-formula> /SiN <inline-formula> <tex-math>\${}_x\$</tex-math> </inline-formula> Stacks and Application at the Rear of Al Local Back Surface Field Si Wafer Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1014-1019.	2.5	13
51	New insights into the thermally activated defects in n-type float-zone silicon. AIP Conference Proceedings, 2019, , .	0.4	13
52	Application of the Newton–Raphson Method to Lifetime Spectroscopy for Extraction of Defect Parameters. IEEE Journal of Photovoltaics, 2017, 7, 1092-1097.	2.5	12
53	On elimination of inactive phosphorus in industrial POCl3 diffused emitters for high efficiency silicon solar cells. Solar Energy Materials and Solar Cells, 2017, 171, 213-221.	6.2	12
54	Investigation of industrial PECVD AlOx films with very low surface recombination. Solar Energy, 2019, 186, 94-105.	6.1	12

#	Article	IF	CITATIONS
55	Selective emitter solar cell through simultaneous laser doping and grooving of silicon followed by self-aligned metal plating. Solar Energy Materials and Solar Cells, 2017, 169, 151-158.	6.2	11
56	Advanced passivation of laser-doped and grooved solar cells. Solar Energy Materials and Solar Cells, 2019, 193, 403-410.	6.2	11
57	Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 585-594.	2.5	11
58	Over 700 mV Implied Voc on p-Type CZ Silicon Solar Cells with Double-Sided Laser Doping. Energy Procedia, 2013, 33, 33-40.	1.8	10
59	Extracting bulk defect parameters in silicon wafers using machine learning models. Npj Computational Materials, 2020, 6, .	8.7	10
60	Gettering Effects of Silicon Nitride Films From Various Plasma-Enhanced Chemical Vapor Deposition Conditions. IEEE Journal of Photovoltaics, 2019, 9, 78-81.	2.5	9
61	Use of QSSPC and QSSPL to Monitor Recombination Processes in P-type Silicon Solar Cells. Energy Procedia, 2014, 55, 169-178.	1.8	8
62	Should the refractive index at 633 nm be used to characterize silicon nitride films?., 2016,,.		8
63	Temperature Coefficients of Crystal Defects in Multicrystalline Silicon Wafers. IEEE Journal of Photovoltaics, 2020, 10, 449-457.	2.5	8
64	Review of injection dependent charge carrier lifetime spectroscopy. Progress in Energy, 2021, 3, 012001.	10.9	8
65	Electrical Characterization of Thermally Activated Defects in n-Type Float-Zone Silicon. IEEE Journal of Photovoltaics, 2021, 11, 26-35.	2.5	8
66	The Impact of SiO $_{2}$ SiN $_{m x}$ Stack Thickness on Laser Doping of Silicon Solar Cell. IEEE Journal of Photovoltaics, 2014, 4, 594-600.	2.5	7
67	Study of hydrogen influence and conduction mechanism of amorphous indium tin oxide for heterojunction silicon wafer solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2226-2232.	1.8	7
68	Photovoltaics literature survey (No. 125). Progress in Photovoltaics: Research and Applications, 2016, 24, 405-407.	8.1	7
69	An Advanced Qualitative Model Regarding the Role of Oxygen During POCl3 Diffusion in Silicon. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700046.	2.4	7
70	Photoluminescence Imaging at Uniform Excess Carrier Density Using Adaptive Nonuniform Excitation. IEEE Journal of Photovoltaics, 2018, 8, 1787-1792.	2.5	7
71	A high-accuracy calibration method for temperature dependent photoluminescence imaging. AIP Conference Proceedings, 2019, , .	0.4	7
72	Hydrogenation in multicrystalline silicon: The impact of dielectric film properties and firing conditions. Progress in Photovoltaics: Research and Applications, 2020, 28, 493-502.	8.1	7

#	Article	IF	Citations
73	Impurity Gettering by Silicon Nitride Films: Kinetics, Mechanisms, and Simulation. ACS Applied Energy Materials, 2021, 4, 10849-10856.	5.1	7
74	Half and full solar cell efficiency binning by deep learning on electroluminescence images. Progress in Photovoltaics: Research and Applications, 2022, 30, 276-287.	8.1	7
75	The influence of silicon nitride layer parameters on the implied Voc of CZ silicon wafers after annealing. , 2009, , .		6
76	Uncertainty in Photoconductance Measurements of the Emitter Saturation Current. IEEE Journal of Photovoltaics, 2013, 3, 1200-1207.	2.5	6
77	Novel non-metallic non-acidic approach to generate sub-wavelength surface structures for inline-diffused multicrystalline silicon wafer solar cells. Applied Surface Science, 2014, 307, 689-697.	6.1	6
78	The impact of surface damage region and edge recombination on the effective lifetime of silicon wafers at low illumination conditions. Journal of Applied Physics, 2015, 117, 085705.	2.5	6
79	Advanced optical modelling of dynamically deposited silicon nitride layers. Applied Physics Letters, 2016, 109, .	3.3	6
80	Metal Induced Contact Recombination Measured By Quasi-steady-state Photoluminescence., 2017,,.		6
81	The Principle of Adaptive Excitation for Photoluminescence Imaging of Silicon: Theory. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800137.	2.4	6
82	Degradation and regeneration of radiation-induced defects in silicon: A study of vacancy-hydrogen interactions. Solar Energy Materials and Solar Cells, 2019, 200, 109990.	6.2	6
83	Temperatureâ€dependent performance of silicon heterojunction solar cells with transitionâ€metalâ€oxideâ€based selective contacts. Progress in Photovoltaics: Research and Applications, 2022, 30, 981-993.	8.1	6
84	Spatially resolved emitter saturation current by photoluminescence imaging. , 2013, , .		5
85	Hybrid silver nanoparticle and transparent conductive oxide structure for silicon solar cell applications. Physica Status Solidi - Rapid Research Letters, 2014, 8, 399-403.	2.4	5
86	Inspecting series resistance effects and bypass diode failure using contactless outdoor photoluminescence imaging. , $2018, \ldots$		5
87	Outdoor PL imaging of crystalline silicon modules at constant operating point. , 2020, , .		5
88	Optimization of Solar Cell Production Lines Using Neural Networks and Genetic Algorithms. ACS Applied Energy Materials, 2020, 3, 10317-10322.	5.1	5
89	Illumination-dependent temperature coefficients of the electrical parameters of modern silicon solar cell architectures. Nano Energy, 2022, 98, 107221.	16.0	5
90	Laser-doped local back surface field., 2011,,.		4

#	Article	lF	Citations
91	Uncertainty in photoluminescence-based effective carrier lifetime measurements., 2012,,.		4
92	Inter-laboratory study of eddy-current measurement of excess-carrier recombination lifetime. , 2013, , .		4
93	Contactless determination of the carrier mobility sum in silicon wafers using combined photoluminescence and photoconductance measurements. Applied Physics Letters, 2014, 104, .	3.3	4
94	In - situ diagnostics of PECVD AlO x deposition by optical emission spectroscopy. Surface and Coatings Technology, 2017, 328, 204-210.	4.8	4
95	A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells. , 2019, , .		4
96	Detailed analysis of radiative transitions from defects in n-type monocrystalline silicon using temperature- and light intensity-dependent spectral Photoluminescence. Solar Energy Materials and Solar Cells, 2020, 208, 110376.	6.2	4
97	Outdoor Implied Current–Voltage Measurements of an Individual Encapsulated Cell in a Module. IEEE Journal of Photovoltaics, 2021, 11, 164-173.	2.5	4
98	Photoconductance Determination of Carrier Capture Cross Sections of Slow Traps in Silicon Through Variable Pulse Filling. IEEE Journal of Photovoltaics, 2021, 11, 273-281.	2.5	4
99	Temperature- and Illumination-Dependent Characterization of Solar Cells Using Suns-V $<$ sub $>$ OC $<$ /sub $>$ (T) and I-V(T). , 2021, , .		4
100	Investigation of the selectivity-mechanism of copper (I) sulfide (Cu2S) as a dopant-free carrier selective contact for silicon solar cells. Applied Surface Science, 2021, 555, 149727.	6.1	4
101	High efficiency pool filtering systems utilising variable frequency drives. Renewable Energy, 2009, 34, 450-455.	8.9	3
102	Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors. Applied Physics Letters, 2013, 103, .	3.3	3
103	Numerical analysis of injection level dependent effective lifetime on $125\mathrm{mm}$ undiffused lifetime samples. , $2014,$, .		3
104	Comparison between Secondary Electron Microscopy Dopant Contrast Image (SEMDCI) and Electron Beam Induced Current (EBIC) for Laser Doping of Crystalline Silicon. Energy Procedia, 2014, 55, 179-185.	1.8	3
105	Ultralow Interface State Density Achieved by Light-Induced Anodization of Aluminum on Silicon Solar Cell Surfaces. IEEE Journal of Photovoltaics, 2015, 5, 1020-1026.	2.5	3
106	Assessing the defect responsible for LeTID: temperature- and injection-dependent lifetime spectroscopy., 2017,,.		3
107	On the Transient Negative Photoconductance in <italic>n</italic> -type Czochralski Silicon. IEEE Journal of Photovoltaics, 2018, 8, 421-427.	2.5	3
108	A Machine Learning Approach to Defect Parameters Extraction: Using Random Forests to Inverse the Shockley-Read-Hall Equation. , 2019, , .		3

#	Article	IF	Citations
109	Investigation of two-level defects in injection dependent lifetime spectroscopy. Solar Energy Materials and Solar Cells, 2020, 216, 110692.	6.2	3
110	On the Correlation between Light-Induced Degradation and Minority Carrier Traps in Boron-Doped Czochralski Silicon. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6140-6146.	8.0	3
111	Investigation of Light-Induced Degradation in Ga- and In-Doped Cz Silicon. , 2021, , .		3
112	Unravelling the silicon-silicon dioxide interface under different operating conditions. Solar Energy Materials and Solar Cells, 2021, 224, 111021.	6.2	3
113	End-of-Line Binning of Full and Half-Cut Cells using Deep Learning on Electroluminescence Images. , 2020, , .		3
114	Bulk defect characterization in metalized solar cells using temperature-dependent Suns-Voc measurements. Solar Energy Materials and Solar Cells, 2022, 236, 111530.	6.2	3
115	On the use of local ideality factor obtained from effective carrier lifetime measurements. , 2013, , .		2
116	Stored charge properties of anodic aluminium oxide on silicon substrate., 2014,,.		2
117	Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors. Journal of Applied Physics, 2014, 116, 134505.	2.5	2
118	Investigation of low injection effects using the local ideality factor obtained from effective lifetime measurements. , 2014 , , .		2
119	Spatially resolved lifetime spectroscopy from temperature-dependent photoluminescence imaging. , 2015, , .		2
120	Photovoltaics literature survey (no. 141). Progress in Photovoltaics: Research and Applications, 2018, 26, 234-238.	8.1	2
121	Photovoltaics literature survey (no. 142). Progress in Photovoltaics: Research and Applications, 2018, 26, 310-314.	8.1	2
122	Extracting Surface Saturation Current Density from Lifetime Measurements of Samples with Metallized Surfaces. , 2018, , .		2
123	Numerical simulations of two-photon absorption time-resolved photoluminescence to extract the bulk lifetime of semiconductors under varying surface recombination velocities. Journal of Applied Physics, 2019, 125, .	2.5	2
124	How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers. , 2019, , .		2
125	A simplified contactless method for outdoor photoluminescence imaging. , 2019, , .		2
126	Injection Dependent Lifetime Spectroscopy for Two-Level Defects in Silicon. , 2019, , .		2

#	Article	IF	CITATIONS
127	Localization of defects in solar cells using luminescence images and deep learning. , 2021, , .		2
128	Spatially resolved defects parameters of the D1 dislocation center in silicon using temperature- and injection-dependent hyperspectral photoluminescence mapping. Solar Energy Materials and Solar Cells, 2021, 229, 111079.	6.2	2
129	Selective Currentâ€Injected Electroluminescence Imaging for Series Resistance Feature Identification. Solar Rrl, 2021, 5, 2100486.	5. 8	2
130	Photovoltaics literature survey (No. 159). Progress in Photovoltaics: Research and Applications, 2020, 28, 621-626.	8.1	2
131	Contactless Series Resistance Imaging of Perovskite Solar Cells via Inhomogeneous Illumination. Solar Rrl, 2021, 5, 2100655.	5.8	2
132	Automated efficiency loss analysis by luminescence image reconstruction using generative adversarial networks. Joule, 2022, 6, 1320-1332.	24.0	2
133	Outstanding As-deposited surface passivation by industrial PECVD aluminum oxide. , 2016, , .		1
134	Photovoltaics literature survey (no. 129). Progress in Photovoltaics: Research and Applications, 2016, 24, 1378-1381.	8.1	1
135	Photovoltaics Literature Survey (No. 132). Progress in Photovoltaics: Research and Applications, 2017, 25, 201-205.	8.1	1
136	Photovoltaics literature survey (No. 137). Progress in Photovoltaics: Research and Applications, 2017, 25, 878-884.	8.1	1
137	Photovoltaics literature survey (no. 138). Progress in Photovoltaics: Research and Applications, 2017, 25, 1077-1083.	8.1	1
138	Photovoltaics literature survey (No. 140). Progress in Photovoltaics: Research and Applications, 2018, 26, 151-156.	8.1	1
139	A unified parameter set designed for typical 2D/3D simulations of homo-/hetero-/single-/multi-junction solar cells in various simulation programs. , 2018, , .		1
140	Insights into Bulk Defects in n-type Monocrystalline Silicon Wafers via Temperature-Dependent Micro-Photoluminescence Spectroscopy. , 2018, , .		1
141	23% efficient n-type crystalline silicon solar cells with passivated partial rear contacts., 2018,,.		1
142	Investigating the different degradation behavior of multicrystalline silicon PERC and Al-BSF solar cells. , $2018, , .$		1
143	Photovoltaics literature survey (No. 144). Progress in Photovoltaics: Research and Applications, 2018, 26, 688-693.	8.1	1
144	Deepâ€Level Defect in Quasiâ€Vertically Oriented CuSbS ₂ Thin Film. Solar Rrl, 2020, 4, 2000319.	5.8	1

#	Article	IF	CITATIONS
145	Photovoltaics literature survey (No. 156). Progress in Photovoltaics: Research and Applications, 2020, 28, 167-173.	8.1	1
146	The Role of Charge and Recombinationâ€Enhanced Defect Reaction Effects in the Dissociation of FeB Pairs in pâ€Type Silicon under Carrier Injection. Physica Status Solidi - Rapid Research Letters, 2021, , 2000520.	2.4	1
147	Photovoltaics literature survey (No. 167). Progress in Photovoltaics: Research and Applications, 2021, 29, 649-653.	8.1	1
148	A Dynamic Calibration Method for Injectionâ€Dependent Charge Carrier Lifetime Measurements. Small Methods, 2021, 5, e2100440.	8.6	1
149	Boron-oxygen related light-induced degradation of Si solar cells: Transformation between minority carrier traps and recombination active centers. , 2020, , .		1
150	Advanced photoluminescence imaging using nonâ€uniform excitation. Progress in Photovoltaics: Research and Applications, 0, , .	8.1	1
151	Work function and induced band bending characterization for engineering of selective contact for solar cells. Advanced Materials Letters, 2018, 9, 629-631.	0.6	1
152	Temperature-dependent Photoluminescence Imaging using Non-uniform Excitation., 2020,,.		1
153	Photovoltaics literature survey (no. 172). Progress in Photovoltaics: Research and Applications, 2022, 30, 204-208.	8.1	1
154	Temperature sensitivity maps of silicon wafers from photoluminescence imaging: The effect of gettering and hydrogenation. Progress in Photovoltaics: Research and Applications, 0, , .	8.1	1
155	Photovoltaics literature survey (No. 114). Progress in Photovoltaics: Research and Applications, 2014, 22, 1316-1320.	8.1	0
156	SunsPZ©: Real-time spatially resolved solar cell parameter visualizer. , 2014, , .		0
157	Application of non-contact corona-Kelvin metrology for characterization of PV dielectrics on textured surfaces. , 2014, , .		0
158	Photovoltaics Literature survey (No. 122). Progress in Photovoltaics: Research and Applications, 2015, 23, 1970-1974.	8.1	0
159	Photovoltaics Literature survey (no. 120). Progress in Photovoltaics: Research and Applications, 2015, 23, 1067-1071.	8.1	0
160	Photovoltaics literature survey (no. 121). Progress in Photovoltaics: Research and Applications, 2015, 23, 1436-1440.	8.1	0
161	Photovoltaics literature survey (no. 119). Progress in Photovoltaics: Research and Applications, 2015, 23, 800-803.	8.1	0
162	Photovoltaics literature survey (No. 117). Progress in Photovoltaics: Research and Applications, 2015, 23, 398-401.	8.1	0

#	Article	IF	Citations
163	Photovoltaics literature survey (No. 115). Progress in Photovoltaics: Research and Applications, 2015, 23, 131-134.	8.1	0
164	Photovoltaics literature survey (No. 116). Progress in Photovoltaics: Research and Applications, 2015, 23, 265-268.	8.1	0
165	Photovoltaics literature survey (No. 118). Progress in Photovoltaics: Research and Applications, 2015, 23, 533-536.	8.1	0
166	Photovoltaics literature survey (no. 127). Progress in Photovoltaics: Research and Applications, 2016, 24, 899-902.	8.1	0
167	Photovoltaics literature survey (No. 123). Progress in Photovoltaics: Research and Applications, 2016, 24, 133-136.	8.1	0
168	Photovoltaics literature survey (No. 124). Progress in Photovoltaics: Research and Applications, 2016, 24, 269-272.	8.1	0
169	Photovoltaics literature survey (No. 128). Progress in Photovoltaics: Research and Applications, 2016, 24, 1157-1161.	8.1	0
170	Photovoltaics literature survey (no. 130). Progress in Photovoltaics: Research and Applications, 2016, 24, 1641-1645.	8.1	0
171	Photovoltaics literature survey (No. 126). Progress in Photovoltaics: Research and Applications, 2016, 24, 584-587.	8.1	0
172	Photovoltaics literature survey (No. 133). Progress in Photovoltaics: Research and Applications, 2017, 25, 264-267.	8.1	0
173	Photovoltaics literature survey (No. 135). Progress in Photovoltaics: Research and Applications, 2017, 25, 470-474.	8.1	0
174	Photovoltaics literature survey (No. 134). Progress in Photovoltaics: Research and Applications, 2017, 25, 335-337.	8.1	0
175	Photovoltaics literature survey (No. 131). Progress in Photovoltaics: Research and Applications, 2017, 25, 132-136.	8.1	0
176	Photovoltaics literature survey (no. 136). Progress in Photovoltaics: Research and Applications, 2017, 25, 746-752.	8.1	0
177	Applications of DMD-based Inhomogeneous Illumination Photoluminescence Imaging for Silicon Wafers and Solar Cells. , 2017, , .		0
178	On the use of voltage measurements for determining carrier lifetime at high illumination intensity. , 2017, , .		0
179	Photovoltaic Literature Survey (No. 139). Progress in Photovoltaics: Research and Applications, 2018, 26, 86-89.	8.1	0
180	Reassessment of Minority Carrier Traps in Silicon during "QuasiSteady-Stateâ€Photoconductance Measurements. , 2018, , .		0

#	Article	IF	CITATIONS
181	Determining Limits of Two-Photon Time-Resolved Photoluminescence for Measuring the Bulk Lifetime in Semiconductors. , 2018, , .		O
182	Contactless Extraction of Implied I-V Curves of Individual Solar Cells in Fully Assembled Modules Using Photoluminescence. , 2018, , .		0
183	Photovoltaics literature survey (No. 146). Progress in Photovoltaics: Research and Applications, 2018, 26, 1007-1012.	8.1	0
184	Photovoltaics Literature Survey (No. 145). Progress in Photovoltaics: Research and Applications, 2018, 26, 877-884.	8.1	0
185	Photovoltaics literature survey (No. 143). Progress in Photovoltaics: Research and Applications, 2018, 26, 419-424.	8.1	0
186	Photovoltaics literature survey (no. 152). Progress in Photovoltaics: Research and Applications, 2019, 27, 739-746.	8.1	0
187	Photovoltaics literature survey (No. 148). Progress in Photovoltaics: Research and Applications, 2019, 27, 190-195.	8.1	0
188	Photovoltaics literature survey (No. 151). Progress in Photovoltaics: Research and Applications, 2019, 27, 556-561.	8.1	0
189	Photovoltaics literature survey (No. 150). Progress in Photovoltaics: Research and Applications, 2019, 27, 371-375.	8.1	0
190	Photovoltaics literature survey (no. 149). Progress in Photovoltaics: Research and Applications, 2019, 27, 275-279.	8.1	0
191	PHOTOVOLTAICS LITERATURE SURVEY (No. 154). Progress in Photovoltaics: Research and Applications, 2019, 27, 1125-1130.	8.1	0
192	Photovoltaics literature survey (No. 153). Progress in Photovoltaics: Research and Applications, 2019, 27, 889-895.	8.1	0
193	Photovoltaics literature survey (No. 147). Progress in Photovoltaics: Research and Applications, 2019, 27, 98-104.	8.1	0
194	On cooling/heating mechanisms in a self-cooled light-emitting diode with type-II band offset. Journal of Applied Physics, 2019, 125, .	2.5	0
195	Photovoltaics literature survey (No. 155). Progress in Photovoltaics: Research and Applications, 2020, 28, 90-96.	8.1	0
196	Photovoltaics literature survey (No. 161). Progress in Photovoltaics: Research and Applications, 2020, 28, 1089-1094.	8.1	0
197	Photovoltaics literature survey (No. 160). Progress in Photovoltaics: Research and Applications, 2020, 28, 854-859.	8.1	0
198	Photovoltaics literature survey (No. 162). Progress in Photovoltaics: Research and Applications, 2020, 28, 1355-1360.	8.1	0

#	Article	IF	CITATIONS
199	Photovoltaic literature survey (no. 158). Progress in Photovoltaics: Research and Applications, 2020, 28, 342-345.	8.1	0
200	Photovoltaics literature survey (No. 157). Progress in Photovoltaics: Research and Applications, 2020, 28, 229-234.	8.1	0
201	Photovoltaics literature survey (No. 163). Progress in Photovoltaics: Research and Applications, 2021, 29, 134-139.	8.1	O
202	Photovoltaics literature survey (No. 164). Progress in Photovoltaics: Research and Applications, 2021, 29, 262-266.	8.1	0
203	Photovoltaics literature survey (No. 165). Progress in Photovoltaics: Research and Applications, 2021, 29, 414-419.	8.1	0
204	Photovoltaics literature survey (No. 166). Progress in Photovoltaics: Research and Applications, 2021, 29, 499-503.	8.1	0
205	Impurity gettering by silicon nitride films: kinetics, mechanisms and simulation. , 2021, , .		0
206	Photovoltaics literature survey (No. 168). Progress in Photovoltaics: Research and Applications, 2021, 29, 968-974.	8.1	0
207	Photovoltaics literature survey (No. 169). Progress in Photovoltaics: Research and Applications, 2021, 29, 1138-1144.	8.1	0
208	Investigation of minority carrier traps in p-type mc-Si: Effect of firing and laser annealing. Solar Energy Materials and Solar Cells, 2021, 232, 111341.	6.2	0
209	Photovoltaics literature survey (No. 170). Progress in Photovoltaics: Research and Applications, 2021, 29, 1303-1308.	8.1	0
210	Photovoltaics literature survey (No. 171). Progress in Photovoltaics: Research and Applications, 2022, 30, 116-120.	8.1	0
211	Photovoltaics literature survey (No. 173). Progress in Photovoltaics: Research and Applications, 2022, 30, 318-321.	8.1	0
212	Bulk Lifetime and Doping in Crystalline Silicon via Two-Photon Absorption Time-Resolved Photoluminescence Decay. IEEE Journal of Photovoltaics, 2022, 12, 778-786.	2. 5	0
213	Photovoltaics literature survey (No. 174). Progress in Photovoltaics: Research and Applications, 2022, 30, 447-451.	8.1	0
214	Introduction: focus on characterisation and reliability of photovoltaic modules in utility-scale plants. Progress in Energy, 2022, 4, 030201.	10.9	0