Matthias S Rupp

List of Publications by Citations

Source: https://exaly.com/author-pdf/3800740/matthias-s-rupp-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 5,167 27 47 g-index

47 6,132 4.9 6.03 L-index

#	Paper	IF	Citations
44	Fast and accurate modeling of molecular atomization energies with machine learning. <i>Physical Review Letters</i> , 2012 , 108, 058301	7.4	1099
43	Quantum chemistry structures and properties of 134 kilo molecules. <i>Scientific Data</i> , 2014 , 1, 140022	8.2	514
42	Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 3404-19	6.4	410
41	Finding density functionals with machine learning. <i>Physical Review Letters</i> , 2012 , 108, 253002	7.4	400
40	Big Data Meets Quantum Chemistry Approximations: The EMachine Learning Approach. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 2087-96	6.4	382
39	Machine learning of molecular electronic properties in chemical compound space. <i>New Journal of Physics</i> , 2013 , 15, 095003	2.9	366
38	Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. <i>Journal of Computer-Aided Molecular Design</i> , 2011 , 25, 533-54	4.2	311
37	Machine learning for quantum mechanics in a nutshell. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1058-1073	2.1	217
36	Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1084-	1093	153
35	DOGS: reaction-driven de novo design of bioactive compounds. <i>PLoS Computational Biology</i> , 2012 , 8, e1002380	5	151
34	Machine Learning for Quantum Mechanical Properties of Atoms in Molecules. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3309-3313	6.4	132
33	Understanding machine-learned density functionals. <i>International Journal of Quantum Chemistry</i> , 2016 , 116, 819-833	2.1	98
32	Modeling of molecular atomization energies using machine learning. <i>Journal of Cheminformatics</i> , 2012 , 4,	8.6	78
31	Graph kernels for chemoinformatics 🖟 critical discussion. <i>Journal of Cheminformatics</i> , 2011 , 3,	8.6	78
30	Orbital-free bond breaking via machine learning. <i>Journal of Chemical Physics</i> , 2013 , 139, 224104	3.9	74
29	Optimizing transition states via kernel-based machine learning. <i>Journal of Chemical Physics</i> , 2012 , 136, 174101	3.9	74
28	Understanding kernel ridge regression: Common behaviors from simple functions to density functionals. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1115-1128	2.1	65

(2010-2007)

Kernel approach to molecular similarity based on iterative graph similarity. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 2280-6	6.1	54
From machine learning to natural product derivatives that selectively activate transcription factor PPARgamma. <i>ChemMedChem</i> , 2010 , 5, 191-4	3.7	47
Machine-learned multi-system surrogate models for materials prediction. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	42
Visual Interpretation of Kernel-Based Prediction Models. <i>Molecular Informatics</i> , 2011 , 30, 817-26	3.8	40
Predicting the pKa of small molecule. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2011 , 14, 307-27	1.3	36
Shapelets: possibilities and limitations of shape-based virtual screening. <i>Journal of Computational Chemistry</i> , 2008 , 29, 108-14	3.5	29
Identifying domains of applicability of machine learning models for materials science. <i>Nature Communications</i> , 2020 , 11, 4428	17.4	29
Graph Kernels for Molecular Similarity. <i>Molecular Informatics</i> , 2010 , 29, 266-73	3.8	28
Chemical diversity in molecular orbital energy predictions with kernel ridge regression. <i>Journal of Chemical Physics</i> , 2019 , 150, 204121	3.9	27
Machine learning estimates of natural product conformational energies. <i>PLoS Computational Biology</i> , 2014 , 10, e1003400	5	26
Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. <i>Journal of Computational Chemistry</i> , 2009 , 30, 2285-96	3.5	20
Rupp et al. Reply:. <i>Physical Review Letters</i> , 2012 , 109,	7.4	20
Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1102-1114	2.1	18
Estimation of Acid Dissociation Constants Using Graph Kernels. <i>Molecular Informatics</i> , 2010 , 29, 731-40	3.8	15
Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization. <i>Journal of Chemical Physics</i> , 2020 , 153, 024112	3.9	14
Special issue on machine learning and quantum mechanics. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 1003-1004	2.1	12
Truxillic acid derivatives act as peroxisome proliferator-activated receptor gamma activators. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 2920-3	2.9	9
Target Profile Prediction: Cross-Activation of Peroxisome Proliferator-Activated Receptor (PPAR) and Farnesoid X Receptor (FXR). <i>Molecular Informatics</i> , 2010 , 29, 287-92	3.8	8
	Information and Modeling, 2007, 47, 2280-6 From machine learning to natural product derivatives that selectively activate transcription factor PPARgamma. ChemMedChem, 2010, 5, 191-4 Machine-learned multi-system surrogate models for materials prediction. Npj Computational Materials, 2019, 5, Visual Interpretation of Kernel-Based Prediction Models. Malecular Informatics, 2011, 30, 817-26 Predicting the pKa of small molecule. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 307-27 Shapelets: possibilities and limitations of shape-based virtual screening. Journal of Computational Chemistry, 2008, 29, 108-14 Identifying domains of applicability of machine learning models for materials science. Nature Communications, 2020, 11, 4428 Graph Kernels for Molecular Similarity. Molecular Informatics, 2010, 29, 266-73 Chemical diversity in molecular orbital energy predictions with kernel ridge regression. Journal of Chemical Physics, 2019, 150, 204121 Machine learning estimates of natural product conformational energies. PLoS Computational Biology, 2014, 10, e1003400 Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. Journal of Computational Chemistry, 2009, 30, 2285-96 Rupp et al. Reply:. Physical Review Letters, 2012, 109, Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives. International Journal of Quantum Chemistry, 2015, 115, 1102-1114 Estimation of Acid Dissociation Constants Using Graph Kernels. Molecular Informatics, 2010, 29, 731-40 Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization. Journal of Chemical Physics, 2020, 153, 024112 Special issue on machine learning and quantum mechanics. International Journal of Quantum Chemistry, 2015, 115, 1003-1004 Truxillic acid derivatives act as peroxisome proliferator-activated receptor gamma activators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2920-3 Target Profile Pr	Information and Modeling, 2007, 47, 2280-6 From machine learning to natural product derivatives that selectively activate transcription factor PPARgamma. ChemMedChem, 2010, 5, 191-4 Machine-learned multi-system surrogate models for materials prediction. Npj Computational Materials, 2019, 5, Visual Interpretation of Kernel-Based Prediction Models. Molecular Informatics, 2011, 30, 817-26 3,8 Predicting the pKa of small molecule. Combinatorial Chemistry and High Throughput Screening, 2011 1,14, 307-27 Shapelets: possibilities and limitations of shape-based virtual screening. Journal of Computational Chemistry, 2008, 29, 108-14 Identifying domains of applicability of machine learning models for materials science. Nature Communications, 2020, 11, 4428 Graph Kernels for Molecular Similarity. Molecular Informatics, 2010, 29, 266-73 3,8 Chemical diversity in molecular orbital energy predictions with kernel ridge regression. Journal of Chemical Physics, 2019, 150, 204121 3,9 Machine learning estimates of natural product conformational energies. PLoS Computational Biology, 2014, 10, e1003400 Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. Journal of Computational Chemistry, 2009, 30, 2285-96 Rupp et al. Reply: Physical Review Letters, 2012, 109, Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives. International Journal of Quantum Chemistry, 2015, 115, 1102-1114 Estimation of Acid Dissociation Constants Using Graph Kernels. Molecular Informatics, 2010, 29, 731-40 3,8 Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization. Journal of Chemisaty, 2015, 115, 1003-1004 Truxillic acid derivatives act as peroxisome proliferator-activated receptor gamma activators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2920-3 Target Profile Prediction: Cross-Activation of Peroxisome Proliferator-Activated Receptor (PPAR)

9	Pharmacophore alignment search tool: Influence of canonical atom labeling on similarity searching. Journal of Computational Chemistry, 2010 , 31, 2810-26	3.5	7	
8	Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors. <i>PLoS ONE</i> , 2011 , 6, e21554	3.7	6	
7	Impact of X-Ray Structure on Predictivity of Scoring Functions: PPARICase Study. <i>Molecular Informatics</i> , 2012 , 31, 631-3	3.8	5	
6	Multi-task learning for pKa prediction. <i>Journal of Computer-Aided Molecular Design</i> , 2012 , 26, 883-95	4.2	5	
5	Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. <i>Npj Computational Materials</i> , 2022 , 8,	10.9	4	
4	Pharmacophore Alignment Search Tool (PhAST): Significance Assessment of Chemical Similarity. <i>Molecular Informatics</i> , 2013 , 32, 625-46	3.8	2	
3	Kernel learning for ligand-based virtual screening: discovery of a new PPAR agonist. <i>Journal of Cheminformatics</i> , 2010 , 2,	8.6	2	
2	Identifying Domains of Applicability of Machine Learning Models for Materials Science		2	
1	Graph Kernels217-243		1	