
Lu Junyong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3800716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling and Design Optimization of Energy Transfer Rate for Hybrid Energy Storage System in Electromagnetic Launch. Energies, 2022, 15, 695.	3.1	2
2	Design and Performance of Armature Surface Coating for Electromagnetic Launcher. IEEE Transactions on Plasma Science, 2022, 50, 2460-2466.	1.3	2
3	A high precision in-bore velocity measurement system of railgun based on improved Bi-LSTM network. Measurement: Journal of the International Measurement Confederation, 2021, 169, 108501.	5.0	10
4	Combined Fuzzy Time Series Prediction Method for Fault Prediction of EML Pulse Capacitors. IEEE Transactions on Plasma Science, 2021, 49, 905-913.	1.3	3
5	Fault Prediction of Electromagnetic Launch System Based on Knowledge Prediction Time Series. IEEE Transactions on Industry Applications, 2021, 57, 1830-1839.	4.9	9
6	Mathematical Modeling and Frequency-Domain Characteristics of a Periodic Pulse-Discharged Lithium-Ion Battery System. IEEE Transactions on Industry Applications, 2021, 57, 1801-1809.	4.9	4
7	Research on Design Method of External Coil of Electromagnetic Rail Launch Equivalent Test Platform. , 2021, , .		0
8	Strain Rate Effect of Armature Material for Electromagnetic Rail Launcher. , 2021, , .		0
9	Interior Ballistic Characteristics of Electromagnetic Rail Launcher Considering the Dynamic Characteristics of Real Launcher. IEEE Transactions on Industrial Electronics, 2021, 68, 6087-6096.	7.9	6
10	A Novel Hybrid Energy Storage System for Large Shipborne Electromagnetic Railgun. IEEE Transactions on Plasma Science, 2021, 49, 2420-2427.	1.3	1
11	Theoretical model of lithium iron phosphate power battery under highâ€rate discharging for electromagnetic launch. International Journal of Mechanical System Dynamics, 2021, 1, 220-229.	2.8	9
12	Interior Ballistic Characteristics of Electromagnetic Rail Launcher Under Continuous Firing. IEEE Transactions on Industry Applications, 2020, 56, 4839-4846.	4.9	4
13	Large-Scale PFN Fault Diagnosis Method Based on Multidimensional Time Series Anomaly Detection Using Convolutional Neural Network. IEEE Transactions on Plasma Science, 2020, 48, 3997-4005.	1.3	8
14	Thermal Analysis in Electromagnetic Rail Launcher Taking Friction Heat into Account Under Active Cooling Condition. IEEE Access, 2020, 8, 84720-84740.	4.2	3
15	Dynamic Mechanical Properties in Electromagnetic Rail Launcher With Cooling Channels. IEEE Transactions on Plasma Science, 2019, 47, 5023-5029.	1.3	1
16	Dielectric Strength Structure-Activity Relationship of BOPP Film for High Energy Density Pulse Capacitor. IEEE Transactions on Plasma Science, 2019, 47, 4342-4349.	1.3	16
17	Analysis of Switching Transient Process in Hybrid Energy Storage System. IEEE Transactions on Plasma Science, 2019, 47, 2500-2506.	1.3	1
18	Analysis of the Factors Influencing the Dynamic Response of Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2151-2158.	1.3	6

Lu Junyong

#	Article	IF	CITATIONS
19	Heat Generation and Thermal Management of a Rapid-Fire Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2143-2150.	1.3	3
20	Research Progress of Electromagnetic Launch Technology. IEEE Transactions on Plasma Science, 2019, 47, 2197-2205.	1.3	50
21	A Novel Measurement Method of Solid Armature's in-Bore Motion State Using B-Dot Probes for Rail Gun. IEEE Transactions on Plasma Science, 2019, 47, 2472-2478.	1.3	12
22	Interior Ballistic Characteristics of Continuous Launch of Electromagnetic Rail Launcher. , 2019, , .		2
23	Research on Projectile Velocity of Electromagnetic Launcher Based on Speed Measurement System. , 2019, , .		0
24	Research on Emergency Braking Strategy of Driverless Vehicle Based on Overload Optimization Control. , 2019, , .		1
25	Research On High Rate Lithium-ion Batteries For Electromagnetic Launcher. , 2019, , .		0
26	Modeling for the Calculation of Interior Ballistic Velocity of Electromagnetic Rail Launch Projectile. IEEE Transactions on Plasma Science, 2019, 47, 807-813.	1.3	4
27	An Initial Survey of the Life of Rail for Electromagnetic Launch. IEEE Transactions on Plasma Science, 2019, 47, 2228-2232.	1.3	3
28	Dynamic Response of Interior Ballistic Process and Rail Stress in Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2172-2178.	1.3	4
29	Temperature Measurement of Electromagnetic Launcher Rails Based on FBG. IEEE Transactions on Plasma Science, 2019, 47, 2382-2386.	1.3	4
30	Dynamic Response of Electromagnetic Rail Launcher Due to Projectile Motion. IEEE Transactions on Plasma Science, 2019, 47, 2166-2171.	1.3	4
31	Simulation of Sabot Discard for Electromagnetic Launch Integrated Projectile. IEEE Transactions on Plasma Science, 2018, 46, 2636-2641.	1.3	6
32	Thermal Analysis in Electromagnetic Launcher With Different Section Shape Rails. IEEE Transactions on Plasma Science, 2018, 46, 2091-2098.	1.3	7
33	Thermal Management of Hybrid Energy Storage for Electromagnetic Launch. IEEE Transactions on Plasma Science, 2017, 45, 1459-1464.	1.3	1
34	Research on Temperature Characteristic of Coaxial Cable Under the Condition of Repetitious Pulse High Current. IEEE Transactions on Plasma Science, 2017, 45, 1184-1189.	1.3	2
35	The Dynamic Performance and Thermal Computation of Electromagnetic Rail Launcher Considering Parameters Variation. IEEE Transactions on Plasma Science, 2017, 45, 1526-1532.	1.3	5
36	Thinking and Study of Electromagnetic Launch Technology. IEEE Transactions on Plasma Science, 2017, 45, 1071-1077.	1.3	83

Lu Junyong

#	Article	IF	CITATIONS
37	A Compulsator Driven Reluctance Coilgun-Type Electromagnetic Launcher. IEEE Transactions on Plasma Science, 2017, 45, 2511-2518.	1.3	18
38	A New Finite-Element Method to Deal With Motion Problem of Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2017, 45, 1374-1379.	1.3	15
39	The Numerical Analysis Methods of Electromagnetic Rail Launcher With Motion. IEEE Transactions on Plasma Science, 2016, 44, 3417-3423.	1.3	11
40	A Multisegmented Long-Stroke Dual-Stator Pulsed Linear Induction Motor for Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2016, 44, 2211-2217.	1.3	14
41	Research on a Linear Permanent Magnet Brushless DC Motor for Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2015, 43, 2088-2094.	1.3	6
42	Performance Analysis of Linear Induction Motor of Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2015, 43, 2081-2087.	1.3	19
43	Research on transverse end effect of linear induction motor for high-speed industrial transportation. , 2014, , .		1
44	Research on Two Types of Linear Machines for Covert Airstrip Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2011, 39, 105-109.	1.3	19
45	Research on End Effect of Linear Induction Machine for High-Speed Industrial Transportation. IEEE Transactions on Plasma Science, 2011, 39, 116-120.	1.3	68