Lu Junyong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3800716/publications.pdf

Version: 2024-02-01

840776 752698 45 447 11 20 h-index citations g-index papers 45 45 45 270 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Thinking and Study of Electromagnetic Launch Technology. IEEE Transactions on Plasma Science, 2017, 45, 1071-1077.	1.3	83
2	Research on End Effect of Linear Induction Machine for High-Speed Industrial Transportation. IEEE Transactions on Plasma Science, 2011, 39, 116-120.	1.3	68
3	Research Progress of Electromagnetic Launch Technology. IEEE Transactions on Plasma Science, 2019, 47, 2197-2205.	1.3	50
4	Research on Two Types of Linear Machines for Covert Airstrip Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2011, 39, 105-109.	1.3	19
5	Performance Analysis of Linear Induction Motor of Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2015, 43, 2081-2087.	1.3	19
6	A Compulsator Driven Reluctance Coilgun-Type Electromagnetic Launcher. IEEE Transactions on Plasma Science, 2017, 45, 2511-2518.	1.3	18
7	Dielectric Strength Structure-Activity Relationship of BOPP Film for High Energy Density Pulse Capacitor. IEEE Transactions on Plasma Science, 2019, 47, 4342-4349.	1.3	16
8	A New Finite-Element Method to Deal With Motion Problem of Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2017, 45, 1374-1379.	1.3	15
9	A Multisegmented Long-Stroke Dual-Stator Pulsed Linear Induction Motor for Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2016, 44, 2211-2217.	1.3	14
10	A Novel Measurement Method of Solid Armature's in-Bore Motion State Using B-Dot Probes for Rail Gun. IEEE Transactions on Plasma Science, 2019, 47, 2472-2478.	1.3	12
11	The Numerical Analysis Methods of Electromagnetic Rail Launcher With Motion. IEEE Transactions on Plasma Science, 2016, 44, 3417-3423.	1.3	11
12	A high precision in-bore velocity measurement system of railgun based on improved Bi-LSTM network. Measurement: Journal of the International Measurement Confederation, 2021, 169, 108501.	5.0	10
13	Fault Prediction of Electromagnetic Launch System Based on Knowledge Prediction Time Series. IEEE Transactions on Industry Applications, 2021, 57, 1830-1839.	4.9	9
14	Theoretical model of lithium iron phosphate power battery under highâ€rate discharging for electromagnetic launch. International Journal of Mechanical System Dynamics, 2021, 1, 220-229.	2.8	9
15	Large-Scale PFN Fault Diagnosis Method Based on Multidimensional Time Series Anomaly Detection Using Convolutional Neural Network. IEEE Transactions on Plasma Science, 2020, 48, 3997-4005.	1.3	8
16	Thermal Analysis in Electromagnetic Launcher With Different Section Shape Rails. IEEE Transactions on Plasma Science, 2018, 46, 2091-2098.	1.3	7
17	Research on a Linear Permanent Magnet Brushless DC Motor for Electromagnetic Catapult. IEEE Transactions on Plasma Science, 2015, 43, 2088-2094.	1.3	6
18	Simulation of Sabot Discard for Electromagnetic Launch Integrated Projectile. IEEE Transactions on Plasma Science, 2018, 46, 2636-2641.	1.3	6

#	Article	IF	Citations
19	Analysis of the Factors Influencing the Dynamic Response of Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2151-2158.	1.3	6
20	Interior Ballistic Characteristics of Electromagnetic Rail Launcher Considering the Dynamic Characteristics of Real Launcher. IEEE Transactions on Industrial Electronics, 2021, 68, 6087-6096.	7.9	6
21	The Dynamic Performance and Thermal Computation of Electromagnetic Rail Launcher Considering Parameters Variation. IEEE Transactions on Plasma Science, 2017, 45, 1526-1532.	1.3	5
22	Modeling for the Calculation of Interior Ballistic Velocity of Electromagnetic Rail Launch Projectile. IEEE Transactions on Plasma Science, 2019, 47, 807-813.	1.3	4
23	Dynamic Response of Interior Ballistic Process and Rail Stress in Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2172-2178.	1.3	4
24	Temperature Measurement of Electromagnetic Launcher Rails Based on FBG. IEEE Transactions on Plasma Science, 2019, 47, 2382-2386.	1.3	4
25	Dynamic Response of Electromagnetic Rail Launcher Due to Projectile Motion. IEEE Transactions on Plasma Science, 2019, 47, 2166-2171.	1.3	4
26	Interior Ballistic Characteristics of Electromagnetic Rail Launcher Under Continuous Firing. IEEE Transactions on Industry Applications, 2020, 56, 4839-4846.	4.9	4
27	Mathematical Modeling and Frequency-Domain Characteristics of a Periodic Pulse-Discharged Lithium-Ion Battery System. IEEE Transactions on Industry Applications, 2021, 57, 1801-1809.	4.9	4
28	Heat Generation and Thermal Management of a Rapid-Fire Electromagnetic Rail Launcher. IEEE Transactions on Plasma Science, 2019, 47, 2143-2150.	1.3	3
29	An Initial Survey of the Life of Rail for Electromagnetic Launch. IEEE Transactions on Plasma Science, 2019, 47, 2228-2232.	1.3	3
30	Thermal Analysis in Electromagnetic Rail Launcher Taking Friction Heat into Account Under Active Cooling Condition. IEEE Access, 2020, 8, 84720-84740.	4.2	3
31	Combined Fuzzy Time Series Prediction Method for Fault Prediction of EML Pulse Capacitors. IEEE Transactions on Plasma Science, 2021, 49, 905-913.	1.3	3
32	Research on Temperature Characteristic of Coaxial Cable Under the Condition of Repetitious Pulse High Current. IEEE Transactions on Plasma Science, 2017, 45, 1184-1189.	1.3	2
33	Interior Ballistic Characteristics of Continuous Launch of Electromagnetic Rail Launcher. , 2019, , .		2
34	Modeling and Design Optimization of Energy Transfer Rate for Hybrid Energy Storage System in Electromagnetic Launch. Energies, 2022, 15, 695.	3.1	2
35	Design and Performance of Armature Surface Coating for Electromagnetic Launcher. IEEE Transactions on Plasma Science, 2022, 50, 2460-2466.	1.3	2
36	Research on transverse end effect of linear induction motor for high-speed industrial transportation. , 2014, , .		1

#	Article	IF	CITATIONS
37	Thermal Management of Hybrid Energy Storage for Electromagnetic Launch. IEEE Transactions on Plasma Science, 2017, 45, 1459-1464.	1.3	1
38	Dynamic Mechanical Properties in Electromagnetic Rail Launcher With Cooling Channels. IEEE Transactions on Plasma Science, 2019, 47, 5023-5029.	1.3	1
39	Analysis of Switching Transient Process in Hybrid Energy Storage System. IEEE Transactions on Plasma Science, 2019, 47, 2500-2506.	1.3	1
40	Research on Emergency Braking Strategy of Driverless Vehicle Based on Overload Optimization Control., 2019,,.		1
41	A Novel Hybrid Energy Storage System for Large Shipborne Electromagnetic Railgun. IEEE Transactions on Plasma Science, 2021, 49, 2420-2427.	1.3	1
42	Research on Projectile Velocity of Electromagnetic Launcher Based on Speed Measurement System. , 2019, , .		0
43	Research On High Rate Lithium-ion Batteries For Electromagnetic Launcher. , 2019, , .		O
44	Research on Design Method of External Coil of Electromagnetic Rail Launch Equivalent Test Platform. , 2021, , .		0
45	Strain Rate Effect of Armature Material for Electromagnetic Rail Launcher. , 2021, , .		0