
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transformations of peroxide products of olefins ozonolysis. Russian Journal of Organic Chemistry, 2010, 46, 1593-1621.	0.3	24
2	Sulfur-Containing Derivatives of Mono- and Bicyclic Natural Monoterpenoids. Chemistry of Natural Compounds, 2014, 50, 22-47.	0.2	18
3	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 37-39.	0.3	12
4	Ozonolysis of alkenes and study of reactions of polyfunctional compounds: LXVIII. Investigation of transformations of peroxide products of olefins ozonolysis treated with hydroxylamine hydrochloride. Russian Journal of Organic Chemistry, 2007, 43, 1114-1119.	0.3	11
5	Transformations of peroxide olefin ozonolysis products under the action of hydroxylamine and semicarbazide hydrochlorides in isopropyl alcohol. Russian Journal of Organic Chemistry, 2013, 49, 1409-1414.	0.3	10
6	Transformation of peroxide products of olefin ozonolysis under treatment with hydroxylamine and semicarbazide hydrochlorides in acetic acid. Russian Journal of Organic Chemistry, 2014, 50, 1075-1081.	0.3	10
7	Ozonolysis of Unsaturated Compounds in the Synthesis of Insect Pheromones and Juvenoids. Chemistry of Natural Compounds, 2015, 51, 199-219.	0.2	10
8	10-Undecenoic acid in the synthesis of insect pheromones. Chemistry of Natural Compounds, 2000, 36, 105-119.	0.2	9
9	Transformations of peroxide ozonolysis products of natural olefins by N-containing organic compounds in methanol. Chemistry of Natural Compounds, 2009, 45, 318-321.	0.2	9
10	Synthesis of the Promising Chiral Synthon Isopropyl-4R-Methyl-6-Iodohexanoate from L-(-)-Menthol. Chemistry of Natural Compounds, 2005, 41, 41-44.	0.2	8
11	Synthesis of Betulonic and Betulinic Acids from Betulin. Chemistry of Natural Compounds, 2018, 54, 795-797.	0.2	8
12	Title is missing!. Chemistry of Natural Compounds, 2003, 39, 31-33.	0.2	7
13	Title is missing!. Chemistry of Natural Compounds, 2003, 39, 28-30.	0.2	7
14	Monoterpene ketones in the synthesis of optically active insect pheromones. Russian Journal of Bioorganic Chemistry, 2012, 38, 667-688.	0.3	7
15	Synthesis from (–)-α-Pinene of an Optically Active Macrocyclic Diesterdihydrazide with 2,6-Pyridinedicarboxylic and Adipic Acid Moities. Chemistry of Natural Compounds, 2017, 53, 63-65.	0.2	7
16	Synthesis of Macrolides with Nitrogen-Containing Fragments. Macroheterocycles, 2011, , 270-310.	0.9	7
17	Optically pure acyclic bifunctional compounds from (?)-menthone. Synthesis ofR-4-methyl-1-nonanol, the sex pheromone of the larger flour beetle (Tenebrio molitor L.). Russian Chemical Bulletin, 1993, 42, 1244-1245.	0.4	6
18	A new method for the direct reduction of products of ozonolysis of 1-alkylcycloalkenes to ketols. Russian Chemical Bulletin, 1999, 48, 197-198.	0.4	6

#	Article	IF	CITATIONS
19	Novel reaction in the chemistry of organoaluminum compounds. Russian Journal of Organic Chemistry, 2011, 47, 472-473.	0.3	6
20	Synthesis of macrolides containing an azine or hydrazide fragment via successive tishchenko disproportionation and [1 + 1]-condensation. Russian Journal of Organic Chemistry, 2011, 47, 1410-1415.	0.3	6
21	Synthesis of macrocyclic azino and dihydrazido diesters by consecutive [2 + 1]- and [1 + 1]-condensations. Russian Journal of Organic Chemistry, 2011, 47, 1416-1425.	0.3	6
22	Oxidation of bicyclic monoterpene ketones with Caro's acid. Russian Journal of Organic Chemistry, 2012, 48, 1210-1215.	0.3	6
23	Versions of new reaction in the chemistry of organoaluminum compounds. Russian Journal of Organic Chemistry, 2014, 50, 1704-1707.	0.3	6
24	Transformations by Tosylhydrazide of Peroxide Ozonolysis Products of â^†3-Carene, (–)-α-Pinene, and (S)-Limonene. Chemistry of Natural Compounds, 2017, 53, 891-894.	0.2	6
25	Novel synthesis of (4R)-4-methylpentanolide from (L)-(â^')-menthol. Chemistry of Natural Compounds, 2004, 40, 548-551.	0.2	5
26	Two approaches to the synthesis of 9-oxo-and 10-hydroxy-2E-decenoic acids, important components of queen substance and royal jelly of honeybees Apis mellifera. Chemistry of Natural Compounds, 2008, 44, 74-76.	0.2	5
27	Synthesis of macrolides with N-containing (azine or hydrazide) groups. Chemistry of Natural Compounds, 2009, 45, 465-469.	0.2	5
28	Transformations of peroxide products of olefin ozonolysis under the action of semicarbazide in methanol. Russian Journal of Organic Chemistry, 2012, 48, 1272-1276.	0.3	5
29	Synthesis of optically active macrolides with hydrazide fragments from tetrahydropyran and L-(+)-tartaric acid derivatives. Chemistry of Natural Compounds, 2013, 49, 691-693.	0.2	5
30	Synthesis of Optically Pure 3R-methylcyclopentan-1-one from L-(-)-menthol. Chemistry of Natural Compounds, 2005, 41, 549-551.	0.2	4
31	L-(-)-Menthol in the Synthesis of Key Synthons for Optically Active Methyl-Branched Insect Pheromones. Chemistry of Natural Compounds, 2005, 41, 719-721.	0.2	4
32	Wittig Olefination of Menthone Lactol and Its Aluminate. Chemistry of Natural Compounds, 2013, 48, 981-984.	0.2	4
33	Natural Seven-Membered Terpene Lactones: Synthesis and Biological Activity. Chemistry of Natural Compounds, 2015, 51, 1011-1034.	0.2	4
34	Effective Synthesis of 3β-Hydroxy-18βH-Olean-9(11),12 (13)-Dien-30-Oic Acid. Chemistry of Natural Compounds, 2016, 52, 959-960.	0.2	4
35	Stereoselective Synthesis of the Antileukemic Sesquiterpene (+)-Caparratriene from L-menthol and Tiglic Aldehyde. Chemistry of Natural Compounds, 2018, 54, 461-463.	0.2	4
36	Synthesis of Enantiomerically Pure Macroheterocycle Containing Ester and Hydrazide Groups from Ricinoleic Acid. Macroheterocycles, 2013, 6, 180-183.	0.9	4

#	Article	IF	CITATIONS
37	Enantiospecific synthesis of (S)-(+)-3-methylheneicosan-2-one, an analog of the sex pheromone of the German cockroach (Blatella germanica L.) from (â^')-(1R,4S)-menthone. Russian Chemical Bulletin, 1997, 46, 1033-1035.	0.4	3
38	Hydroboration-oxidation of ricinoleic acid derivatives. Russian Journal of Organic Chemistry, 2008, 44, 1130-1133.	0.3	3
39	Reduction at low temperature of isomentholactone with diisobutylaluminum hydride in CH2Cl2. Russian Journal of Organic Chemistry, 2015, 51, 1180-1182.	0.3	3
40	Low-Temperature Reduction by Diisobutylaluminum Hydride in CH2Cl2 of Seven-Membered Lactones from Betulin and S-(+)-Camphor. Chemistry of Natural Compounds, 2015, 51, 716-720.	0.2	3
41	Low-temperature reduction of acyclic (–)-mentholactone derivatives with diisobutylaluminum hydride in methylene chloride. Russian Journal of Organic Chemistry, 2015, 51, 947-950.	0.3	3
42	Insect pheromones and their analogues. Chemistry of Natural Compounds, 1991, 27, 500-502.	0.2	2
43	Insect phermones and their analogues XXXVIII. Synthesis of (±)-3-methylheneicosan-2-one and (±)-2-acetoxy-3,7-dimethylpentadecane using the reductive β-vinylation of α-olefins. Chemistry of Natural Compounds, 1992, 28, 496-499.	0.2	2
44	Synthesis of (S)-6-methylhept-5-en-2-ol, the aggregation pheromone ofGnathotrichus sulcatus. Russian Chemical Bulletin, 2000, 49, 717-721.	0.4	2
45	Title is missing!. Russian Chemical Bulletin, 2003, 52, 740-744.	0.4	2
46	Synthesis of 3S-methylundec-1-ylbromide, a key synthon in the synthesis of (S,S,S)-diprionylacetate, from L-(-)-menthol. Chemistry of Natural Compounds, 2006, 42, 92-95.	0.2	2
47	Ozonolytic transformations of olefinic derivatives of L-menthol and ricinolic acid. Chemistry of Natural Compounds, 2006, 42, 631-635.	0.2	2
48	Unusual behavior of methylidentriphenylphosphorane in reactions with seven-membered lactols. Russian Journal of Organic Chemistry, 2011, 47, 1142-1145.	0.3	2
49	New approach to the synthesis of 9-oxo-2E-decenoic acid, a multifunctional pheromone of queen honeybee, from the telomer of butadiene and water. Chemistry of Natural Compounds, 2011, 47, 789-791.	0.2	2
50	Low-temperature hydride reduction of (3R)-carvomentholactone. Chemistry of Natural Compounds, 2012, 47, 896-898.	0.2	2
51	Unexpected acidic transformation of allylic menthene sulfoxides into saturated sulfones. Mendeleev Communications, 2016, 26, 81-82.	0.6	2
52	Macrolactonization of 12R-Hydroxyoctadec-9Z-Enoic Acid. Chemistry of Natural Compounds, 2018, 54, 1149-1151.	0.2	2
53	Synthesis of Optically Active Macrolides from L-menthol. Chemistry of Natural Compounds, 2018, 54, 889-892.	0.2	2
54	Hydroboration by Diborane of Methyl Abietate. Chemistry of Natural Compounds, 2018, 54, 478-480.	0.2	2

#	Article	IF	CITATIONS
55	Synthesis of Optically Active Macrolides From L-Menthone Derivatives and Hydrazides of Adipic and 2,6-Pyridinedicarboxylic Acids. Chemistry of Natural Compounds, 2018, 54, 496-498.	0.2	2
56	Methods for Macrolactonization of Seco Acids in the Synthesis of Natural and Biologically Active Compounds. Russian Journal of Organic Chemistry, 2021, 57, 679-729.	0.3	2
57	Functionalisation of Macroheterocycles with Preserving and Changing Their Sizes. Macroheterocycles, 2017, 10, 345-379.	0.9	2
58	Synthesis of Macroheterocycles with Ester and Hydrazide Fragments on the Basis of Tetrahydropyran. Macroheterocycles, 2011, 4, 50-57.	0.9	2
59	Synthesis of Optically Pure Macroheterocycle with Ester and Hydrazide Fragments on the Basis of I-Menthol. Macroheterocycles, 2012, 5, 246-248.	0.9	2
60	Insect pheromones and their analogs. XXIV. Methyl-branched pheromones derived from 4-methyltetrahydropyran. Synthesis of racemic 14-methyloctadec-1-ene ? The pheromone ofLyonetia clerckella. Chemistry of Natural Compounds, 1990, 26, 86-87.	0.2	1
61	Pheromones of insects and their analogs. XXIX. Methyl-branched pheromones from 4-methyltetrahydropyran 4: Synthesis of (تزائر)-15,19,23-trimethylheptatriacontane ? A pheromone of Glossina morsitans morsitans. Chemistry of Natural Compounds, 1991, 27, 361-363.	0.2	1
62	Stereospecific synthesis of 11E-tetradecenal, 11E-tetradecen-1-ol, and its acetate, pheromone components of insects ofLepidoptera order, from 10-undecenoic acid. Russian Chemical Bulletin, 1997, 46, 1035-1037.	0.4	1
63	A convergent synthesis of octadeca-2E, 13Z-dienyl acetate, a pheromone component ofSynanthedon tipuliformis C Russian Chemical Bulletin, 1997, 46, 1465-1467.	0.4	1
64	A versatile approach to the synthesis of 9(Z)-unsaturated acyclic insect pheromones from undec-10-enoic acid. Russian Chemical Bulletin, 1998, 47, 1595-1597.	0.4	1
65	Synthesis from 10-undecenoic acid of octadeca-2E,13Z-dienylacetate, a component of the sex pheromones ofSynanthedon tipuliformis andZenzera pyrina. Chemistry of Natural Compounds, 2000, 36, 207-209.	0.2	1
66	Title is missing!. Chemistry of Natural Compounds, 2001, 37, 486-489.	0.2	1
67	Synthesis of (3S,6RS)- and (3RS,6RS)-Analogs of Component AI of the Aonidiella aurantii Sex Pheromone by Stepwise Alkylation of Acetoacetic Ester. Chemistry of Natural Compounds, 2005, 41, 715-718.	0.2	1
68	Synthesis from L-menthol of optically active macrolides with N-containing (azine or hydrazide) groups. Chemistry of Natural Compounds, 2009, 45, 470-473.	0.2	1
69	Prilezhaev dihydroxylation of (R)-octadec-9Z-en-7-0l. Chemistry of Natural Compounds, 2009, 45, 637-640.	0.2	1
70	Synthesis of symmetric macrocyclic diesterdihyrazides using successive [2+1]- and [1+1]-condensations. Chemistry of Natural Compounds, 2010, 46, 10-14.	0.2	1
71	Synthesis from (+)-α-pinene of optically active macrocycles containing cyclobutane, ester, azine, or hydrazide groups. Chemistry of Natural Compounds, 2011, 47, 210-214.	0.2	1
72	Hydroboration-oxidation of ricinoleic acid ester derivatives. Russian Journal of Organic Chemistry, 2012, 48, 1509-1511.	0.3	1

#	Article	IF	CITATIONS
73	Synthesis of enantiomerically pure macrolides with hydrazide fragments from tetrahydropyran and l-(+)-tartaric acid derivatives. Russian Chemical Bulletin, 2013, 62, 217-219.	0.4	1
74	Thiylation of (R)-4-Menthen-3-one and Its Derivatives. Chemistry of Natural Compounds, 2013, 49, 864-871.	0.2	1
75	Synthetic Approaches to Optically Active Macrolides Containing Hydrazide Fragments of L-(+)-Tartaric Acid from (+)-3-Carene, (+)-α-Pinene, and S-(–)-Limonene. Chemistry of Natural Compounds, 2014, 50, 658-660.	0.2	1
76	Transformations of peroxide products of oleic acid ozonolysis at treatment with hydroxylamine and semicarbazide hydrochlorides. Russian Journal of Organic Chemistry, 2015, 51, 610-614.	0.3	1
77	One-pot ozonolytic synthesis of acyclic α,ï‰-bifunctional compounds from methyl 10-undecenoate and 10-undecen-1-ol. Russian Journal of Applied Chemistry, 2015, 88, 935-940.	0.1	1
78	Stereospecific synthesis of cis-verbenol. Russian Journal of Organic Chemistry, 2016, 52, 755-756.	0.3	1
79	One-Step Synthesis from Castor Oil of Enantiomeric Macrolides. Chemistry of Natural Compounds, 2017, 53, 620-622.	0.2	1
80	Macrocyclic Lactonization of 3R,7-Dimethyl-6S-Hydroxyoctanoic Acid. Chemistry of Natural Compounds, 2018, 54, 684-687.	0.2	1
81	Influence of Some Factors on the Progress of a New Reaction in the Chemistry of Organoaluminum Compounds. Russian Journal of Organic Chemistry, 2020, 56, 1353-1358.	0.3	1
82	Synthesis from Δ3-Carene of Optically Active Macrolides with Fragments of Di- and Triethyleneglycol and Hydrazides of Dicarboxylic Acids. Chemistry of Natural Compounds, 2020, 56, 487-491.	0.2	1
83	Hydroboration–Oxidation of Terpenoids in Targeted Syntheses of Low-Molecular-Mass Bioregulators. Chemistry of Natural Compounds, 2020, 56, 1-26.	0.2	1
84	Synthesis of α,ω-Diketodiesters from Betulin. Chemistry of Natural Compounds, 2021, 57, 706-711.	0.2	1
85	Synthesis of Macroheterocycles with Nitrogen-Containing and Ester Fragments from Undecylenic Acid. Macroheterocycles, 2018, 11, 193-196.	0.9	1
86	Synthesis of Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macroheterocycles, 2014, 7, 321-324.	0.9	1
87	Synthesis of Macroheterocycles Containing Pyridine-2,6-dicarboxylic and Adipic Acid Ester and Hydrazide Fragments Starting from Tetrahydropyran. Russian Journal of Organic Chemistry, 2020, 56, 2236-2239.	0.3	1
88	New Ozonolytic Synthesis of Keto Acids from 1-Alkylcycloalkenes. Russian Journal of Organic Chemistry, 2022, 58, 163-166.	0.3	1
89	Insect pheromones and their analogues XLIII. Chiral pheromones from (S)-(+)-3,7-dimethylocta-1,6-diene 3. Synthesis of (4R)-4-methylnonan-1-OL — Sex pheromone of Tenebrio molitor and its racemic analogue. Chemistry of Natural Compounds, 1992, 28, 618-621.	0.2	0
90	Insect pheromones and their analogues XLII. Synthesis of 2,6-dimethyloct-1-yl formate — A mimic of the aggregation pheromone of flour beetles. Chemistry of Natural Compounds, 1992, 28, 499-500.	0.2	0

#	Article	IF	CITATIONS
91	Synthesis of the racemic analog of a honeybee (Apis mellifera) breeding pheromone component. Chemistry of Natural Compounds, 2004, 40, 593-594.	0.2	0
92	(R)-n-menth-4-en-3-one and its Derivatives in Reactions with N-containing Reagents. Chemistry of Natural Compounds, 2014, 50, 272-275.	0.2	0
93	Reactions of bicyclo[2.2.1]heptane-2-endo,3-endo-dicarbohydrazide and its 5-endo,6-endo- and 5-endo,6-exo-dihydroxy derivatives with 7-oxooctyl 7-oxooctanoate and bis(7-oxooctyl) hexanedioate. Russian Journal of Organic Chemistry, 2015, 51, 831-835.	0.3	0
94	[1 + 1]-Condensation of 12-Oxo-Derivatives of Ricinoleic Acid Esters with Hydrazine Hydrate on the Route to Macrocycles. Chemistry of Natural Compounds, 2017, 53, 231-233.	0.2	0
95	Synthesis of optically active macrolides bearing di- and triethylene glycol and dicarboxylic acid hydrazide moieties from (-)-α-pinene. Russian Chemical Bulletin, 2019, 68, 1445-1450.	0.4	0
96	Synthesis from Undecylenic Acid of Macroheterocycles with Diacylhydrazine and Ester Fragments. Chemistry of Natural Compounds, 2019, 55, 895-898.	0.2	0
97	Undec-10-enoic Acid in the Synthesis of Macroheterocycles Containing Hydrazide and Ester Fragments. Russian Journal of Organic Chemistry, 2019, 55, 514-517.	0.3	0
98	Interaction of 7-oxoоctyl-7-oxooctanoate and bis(7-oxooctyl)hexandioate with phthalic dihydrazide. Macroheterocycles, 2014, 7, 391-393.	0.9	0
99	TiCl4 – an Effective Catalyst for Transformation of Betulin Into A-Neo-3-Isopropyl-19β,28-Epoxy-18α-Olean-9(10)-Ene. Chemistry of Natural Compounds, 2021, 57, 1167-1168.	0.2	0
100	Synthesis of [2+1] Conjugates of Betulic Acid with α,ï‰-Diols. Russian Journal of Organic Chemistry, 2021, 57, 1861-1867.	0.3	0