Javier RodrÃ-guez-Salarichs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799619/publications.pdf

Version: 2024-02-01

18	512	12	18
papers	citations	h-index	g-index
18	18	18	921
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Versatile Lipases from the <i>Candida rugosa </i> -like Family: A Mechanistic Insight Using Computational Approaches. Journal of Chemical Information and Modeling, 2021, 61, 913-920.	5.4	9
2	Structural Basis of Noscapine Activation for Tubulin Binding. Journal of Medicinal Chemistry, 2020, 63, 8495-8501.	6.4	30
3	Improvement of the Activity of a Fungal Versatile-Lipase Toward Triglycerides: An in silico Mechanistic Description. Frontiers in Bioengineering and Biotechnology, 2019, 7, 71.	4.1	7
4	Synthesis, Profiling, and Bioactive Conformation of trans yclopropyl Epothilones. Helvetica Chimica Acta, 2019, 102, e1900078.	1.6	3
5	Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites. Journal of Natural Products, 2018, 81, 494-505.	3.0	15
6	Modification of C-seco taxoids through ring tethering and substituent replacement leading to effective agents against tumor drug resistance mediated by \hat{l}^2 III-Tubulin and P-glycoprotein (P-gp) overexpressions. European Journal of Medicinal Chemistry, 2017, 137, 488-503.	5.5	13
7	Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chemical Biology, 2017, 24, 737-750.e6.	5.2	58
8	Synthesis, Biological Profiling and Determination of the Tubulin-Bound Conformation of 12-Aza-Epothilones (Azathilones). Molecules, 2016, 21, 1010.	3.8	6
9	Structural and Biochemical Characterization of the Interaction of Tubulin with Potent Natural Analogues of Podophyllotoxin. Journal of Natural Products, 2016, 79, 2113-2121.	3.0	26
10	TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabE ^{RAB11} . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4346-4351.	7.1	55
11	Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorganic and Medicinal Chemistry, 2014, 22, 5078-5090.	3.0	35
12	Molecular Recognition of Epothilones by Microtubules and Tubulin Dimers Revealed by Biochemical and NMR Approaches. ACS Chemical Biology, 2014, 9, 1033-1043.	3.4	30
13	Free Energy Profile and Kinetics Studies of Paclitaxel Internalization from the Outer to the Inner Wall of Microtubules. Journal of Chemical Theory and Computation, 2013, 9, 698-706.	5.3	9
14	New Interfacial Microtubule Inhibitors of Marine Origin, PM050489/PM060184, with Potent Antitumor Activity and a Distinct Mechanism. ACS Chemical Biology, 2013, 8, 2084-2094.	3.4	57
15	Zampanolide, a Potent New Microtubule-Stabilizing Agent, Covalently Reacts with the Taxane Luminal Site in Tubulin $\hat{l}\pm,\hat{l}^2$ -Heterodimers and Microtubules. Chemistry and Biology, 2012, 19, 686-698.	6.0	81
16	Modulation of Microtubule Interprotofilament Interactions by Modified Taxanes. Biophysical Journal, 2011, 101, 2970-2980.	0.5	28
17	Insights into the Interaction of Discodermolide and Docetaxel with Tubulin. Mapping the Binding Sites of Microtubule-Stabilizing Agents by Using an Integrated NMR and Computational Approach. ACS Chemical Biology, 2011, 6, 789-799.	3.4	46
18	High-throughput preparation of alkyl 4-aryl substituted-2-methyl-6-thioxo-1,4,5,6-tetrahydropyridine-3-carboxylates under microwave irradiation. Arkivoc, 2011, 2011, 125-141.	0.5	4