Paul Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Research Letters, 2012, 7, 470.	5.7	317
2	lmaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. Physical Review Letters, 1994, 72, 2927-2930.	7.8	149
3	Barrier characteristics of Schottky diodes as determined from I-V-T measurements. Solid-State Electronics, 1996, 39, 583-592.	1.4	118
4	Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes. Nano Letters, 2011, 11, 365-371.	9.1	84
5	Observation and explanation of light-emission spectra from statistically rough Cu, Ag, and Au tunnel junctions. Physical Review B, 1984, 30, 3164-3178.	3.2	76
6	Wavelength Dependence of Raman Enhancement from Gold Nanorod Arrays: Quantitative Experiment and Modeling of a Hot Spot Dominated System. Journal of Physical Chemistry C, 2010, 114, 19913-19919.	3.1	75
7	Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots. Journal of Applied Physics, 1999, 86, 2555-2561.	2.5	73
8	Unusual photoresponse of indium doped ZnO/organic thin film heterojunction. Applied Physics Letters, 2012, 100, .	3.3	62
9	Electrical conduction and rheological behaviour of composites ofÂpoly(ε-caprolactone) and MWCNTs. Polymer, 2015, 58, 209-221.	3.8	62
10	Chemical etching of optical fibre tips — experiment and model. Ultramicroscopy, 2000, 85, 235-248.	1.9	52
11	Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection. Physical Review B, 2001, 63, .	3.2	48
12	Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films, 2012, 524, 137-143.	1.8	45
13	Influence of metal grain size on surface-enhanced Raman scattering. Physical Review B, 1991, 44, 6372-6381.	3.2	32
14	Safe fabrication of sharp gold tips for light emission in scanning tunnelling microscopy. Ultramicroscopy, 2008, 108, 558-566.	1.9	30
15	Cobalt-doped ZnO nanowires on quartz: Synthesis by simple chemical method and characterization. Journal of Crystal Growth, 2012, 343, 7-12.	1.5	30
16	Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology, 2007, 18, 215203.	2.6	28
17	Surface-Enhanced Raman Scattering from Metallic Nanostructures: Bridging the Gap between the Near-Field and Far-Field Responses. Physical Review X, 2013, 3, .	8.9	28
18	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	3.2	27

#	Article	IF	CITATIONS
19	The tip–sample water bridge and light emission from scanning tunnelling microscopy. Nanotechnology, 2009, 20, 335202.	2.6	24
20	Fabrication of nano-scale optical patterns in amorphous silicon carbide with focused ion beam writing. Vacuum, 2005, 79, 100-105.	3.5	23
21	Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy. Applied Physics Letters, 2009, 94, .	3.3	22
22	Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold. Surface Science, 2005, 577, 95-111.	1.9	21
23	Imaging of surface plasmon launch and propagation using a photon scanning tunneling microscope. Ultramicroscopy, 1995, 57, 287-292.	1.9	20
24	Light emission from scanning tunnelling microscope on polycrystalline Au films—what is happening at the single-grain level?. Journal of Optics, 2006, 8, S219-S226.	1.5	20
25	Near-field optical mapping of the ion-implanted patterns fabricated in amorphous silicon carbide. Vacuum, 2005, 79, 94-99.	3.5	18
26	Optical contrast in ion-implanted amorphous silicon carbide nanostructures. Journal Physics D: Applied Physics, 2007, 40, 7492-7496.	2.8	18
27	Composites of poly(εâ€caprolactone) and Mo ₆ S ₃ I ₆ Nanowires. Polymers for Advanced Technologies, 2012, 23, 149-160.	3.2	17
28	Detection of Low-Concentration Contaminants in Solution by Exploiting Chemical Derivatization in Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2014, 86, 9006-9012.	6.5	17
29	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	3.2	16
30	Photosignal enhancement in Alâ€GaAs diodes due to surface plasmons and guided wave modes. Journal of Applied Physics, 1993, 74, 7481-7487.	2.5	14
31	Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons. Physical Review B, 2016, 94, .	3.2	14
32	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	3.2	14
33	Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission. Scientific Reports, 2017, 7, 3530.	3.3	14
34	Image of the Electron Energy-Loss Function in Light Emitted from Tunnel Junctions. Physical Review Letters, 1982, 49, 892-895.	7.8	13
35	Spectral dependence of light output from LEIT devices on electrode morphology. Journal of Physics Condensed Matter, 1989, 1, 7931-7940.	1.8	13
36	Analysis of surface plasmon polariton enhancement in photodetection by Al—GaAs Schottky diodes. Solid-State Electronics, 1993, 36, 1417-1427.	1.4	13

#	Article	IF	CITATIONS
37	Prism coupler with variable coupling gap. Review of Scientific Instruments, 2000, 71, 4208.	1.3	13
38	Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations. Solid-State Electronics, 2002, 46, 29-33.	1.4	13
39	Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity—modelling and experiment. Journal Physics D: Applied Physics, 2009, 42, 215101.	2.8	13
40	Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps. Surface Science, 2004, 572, 497-520.	1.9	12
41	Ultraâ€broadband Polarisers Based on Metastable Free‣tanding Aligned Carbon Nanotube Membranes. Advanced Optical Materials, 2014, 2, 929-937.	7.3	12
42	Surface enhanced Raman scattering from mildly roughened surfaces: variation of signal with metal grain size. Surface Science, 1991, 250, L383-L388.	1.9	11
43	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11
44	Solvothermal synthesis of graphene oxide and its composites with poly(Îμ-caprolactone). Nanoscale, 2019, 11, 18672-18682.	5.6	11
45	Optimization of the slowâ€mode plasmon polariton in lightâ€emitting tunnel junctions. Journal of Applied Physics, 1995, 78, 5522-5533.	2.5	10
46	Effect of temperature and inhomogeneity on the yield of PtSi–n–Si photodetectors. Journal of Crystal Growth, 2006, 288, 166-170.	1.5	10
47	Light emission from nominally smooth Ag tunnel junctions. Surface Science, 1986, 171, 135-145.	1.9	9
48	Characterization of the Au surface structure of Al–I–Au light-emitting tunnel junctions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 879.	1.6	9
49	Rear leit observation. Solid State Communications, 1982, 44, 1127-1129.	1.9	8
50	Light emission from statistically rough Ag tunnel junctions. Surface Science, 1986, 171, 146-156.	1.9	8
51	Characterization of Surface Plasmons on Metal-oxide-semiconductor Structures. Journal of Modern Optics, 1991, 38, 1593-1598.	1.3	8
52	Monte Carlo calculations of quantum yield in inhomogeneous PtSi/p-Si Schottky barriers. Semiconductor Science and Technology, 1998, 13, 700-704.	2.0	8
53	The mechanism of light emission from statistically rough tunnel junctions. Solid State Communications, 1984, 50, 383-388.	1.9	7
54	Optical detection of surface plasmons on tunnel-junction structures. Journal Physics D: Applied Physics, 1987, 20, 776-784.	2.8	7

Paul Dawson

#	Article	IF	CITATIONS
55	Surface Plasmon Enhanced Laser Ablation of Thin Metal Films. Journal of Modern Optics, 1994, 41, 1287-1294.	1.3	7
56	Temperature dependence of the mid-infrared dielectric function of YBCO in the ab plane. Physica C: Superconductivity and Its Applications, 1996, 271, 298-310.	1.2	7
57	The interaction of surface plasmon polaritons with a silver film edge. Journal of Microscopy, 1999, 194, 578-583.	1.8	7
58	Surface plasmon polariton propagation across a gentle silver step. Surface Science, 2001, 490, 85-98.	1.9	7
59	Yield in inhomogeneous PtSi–n-Si Schottky photodetectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 567, 372-375.	1.6	7
60	Fast mode surface plasmon damping on tunnel junction structures. Surface Science, 1991, 245, 225-231.	1.9	6
61	Temperature dependence of the mid-infrared dielectric function of YBCO in the a–b plane: a re-evaluation. Physica C: Superconductivity and Its Applications, 2000, 340, 1-15.	1.2	6
62	An alternative methodology in Schottky diode physics. Journal of Applied Physics, 2015, 117, .	2.5	6
63	Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas: experiment and modelling. Physical Chemistry Chemical Physics, 2018, 20, 5827-5840.	2.8	6
64	Calculation of slow mode surface plasmon polariton properties related to experimental observations. Applied Physics Letters, 1992, 61, 2776-2778.	3.3	5
65	Characterizing wear processes on orthopaedic materials using scanning probe microscopy. Applied Physics A: Materials Science and Processing, 1998, 66, S867-S871.	2.3	5
66	Application of surface plasmon polaritons in the laser ablation and characterisation of thin aluminium films. Surface Science, 1999, 429, 117-126.	1.9	5
67	Variable temperature, variable-gap Otto prism coupler for use in a vacuum environment. Review of Scientific Instruments, 2000, 71, 4213.	1.3	5
68	Imaging tip formation in single-mode optical fibres. Ultramicroscopy, 2001, 86, 233-239.	1.9	5
69	Mid-infrared a–b plane response of YBa2Cu3O7â°î́r as a function of doping and temperature determined by attenuated total reflection. Physica C: Superconductivity and Its Applications, 2004, 403, 67-85.	1.2	5
70	Photon Emission at Step Edges of Single Crystalline Gold Surfaces Investigated by Scanning Tunnelling Microscopy. Japanese Journal of Applied Physics, 2006, 45, 2119-2123.	1.5	5
71	Design and fabrication of plasmonic cavities for magneto-optical sensing. AIP Advances, 2018, 8, .	1.3	5
72	Infra-red surface plasmons on platinum silicide. Electronics Letters, 1992, 28, 164.	1.0	4

#	Article	IF	CITATIONS
73	Contrasting damage characteristics in direct incidence and surface plasmon mediated single-shot laser ablation of aluminium films. Applied Surface Science, 1998, 127-129, 46-52.	6.1	4
74	BARRIER HEIGHT VARIATIONS AND INTERFACE PROPERTIES OF PtSi/Si STRUCTURES. Surface Review and Letters, 2006, 13, 273-278.	1.1	4
75	Optical transmission through single subwavelength apertures using prism coupled input of laser light of annular intensity profile. Optics Express, 2007, 15, 17863.	3.4	4
76	Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering. Faraday Discussions, 2017, 205, 121-148.	3.2	4
77	Grazing-incidence optical magnetic recording with super-resolution. Beilstein Journal of Nanotechnology, 2017, 8, 28-37.	2.8	4
78	<title>Surface-plasmon-enhanced Schottky barrier sensors</title> . , 1992, 1637, 216.		3
79	Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared. Physica B: Condensed Matter, 1994, 194-196, 2333-2334.	2.7	3
80	Broadband Excitation and Emission of Surface Plasmons. Journal of Modern Optics, 1994, 41, 1279-1286.	1.3	3
81	Optical, topographical, and compositional characterization of PtSi/Si Schottky diodes. , 1994, 2274, 55.		3
82	The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode—rectifying an oversight in Schottky diode investigation. Journal Physics D: Applied Physics, 2011, 44, 125101.	2.8	3
83	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	3.2	3
84	Possible observation of the direct emission of radiation from tunnel junctions. Journal of Physics Condensed Matter, 1989, 1, 9021-9026.	1.8	2
85	Scheme for enhancing efficiency in resonant-cavity Schottky photodetectors. Microelectronics Journal, 2001, 32, 779-782.	2.0	2
86	High sensitivity (1 ppm) hydrogen detection using an unconventional Pd/n-InP Schottky device. Journal of Physics Condensed Matter, 2011, 23, 422201.	1.8	2
87	Surface plasmons on PtSi for visible and infrared Schottky-barrier-enhanced detection. , 1992, 1735, 240.		1
88	Anisotropy of optical constants of YBCO. Journal of Superconductivity and Novel Magnetism, 1994, 7, 943-946.	0.5	1
89	<title>Modeling the optical response of grating-profiled PtSi/Si infrared detectors</title> . , 1997, , .		1
90	Characterization of optical properties of PtSi at 3.392 \hat{l} $\!\!\!/4$ m from 300 K to 85 K and the relation of morphological effects. , 1999, , .		1

#	Article	IF	CITATIONS
91	Surface enhanced Raman scattering from mildly roughened surfaces: variation of signal with metal grain size. Surface Science Letters, 1991, 250, L383-L388.	0.1	0
92	<title>Influence of surface topography on light emission from tunnel junctions</title> . , 1992, , .		0
93	Surface-enhanced Raman scattering from mildly roughened surfaces: influence of metal grain size on signal. , 1992, , .		0
94	Interplay of CaF2. Journal of Modern Optics, 1993, 40, 1725-1730.	1.3	0
95	Dependence of light output from nominally smooth Al-Ox-Au tunnel junctions on electrode morphology. Journal of Physics Condensed Matter, 1993, 5, L419-L424.	1.8	0
96	<title>Temperature dependence of the dielectric function of laser deposited YBCO thin films at 3392 nm</title> . , 1996, 2696, 597.		0
97	DC resistance and dielectric function at 3392nm of YBCO films from 300K to 80K. European Physical Journal D, 1996, 46, 1395-1396.	0.4	0
98	Dielectric function of YBCO in the mid-infrared: temperature and doping dependence at 3.392μm. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2273-2274.	1.2	0
99	The mid-infrared dielectric function of NBCO in thea-bplane from 85 K to 300 K. Superconductor Science and Technology, 2001, 14, 130-138.	3.5	0
100	Dielectric function of YBCO determined by attenuated total reflection in the mid-infrared (3,392 nm). Physica C: Superconductivity and Its Applications, 2004, 408-410, 799-800.	1.2	0
101	MISE EN ÉVIDENCE DU RÔLE DOMINANT DES PLASMONS POLARITONS RAPIDES LORS DE L'ÉMISSION DE LUMIÃ^RE PAR DES JONCTIONS TUNNEL A RUGOSITÉ STATISTIQUE. Journal De Physique Colloque, 1984, 45, C5-269-C5-274.	0.2	0