David Lyon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47, D607-D613.	14.5	12,237
2	The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 2021, 49, D605-D612.	14.5	4,274
3	Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nature Structural and Molecular Biology, 2017, 24, 325-336.	8.2	283
4	Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Science Signaling, 2016, 9, rs9.	3.6	241
5	Site-specific characterization of endogenous SUMOylation across species and organs. Nature Communications, 2018, 9, 2456.	12.8	139
6	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 2019, 574, 103-107.	27.8	135
7	Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nature Communications, 2019, 10, 1055.	12.8	129
8	Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation. Cell Reports, 2018, 24, 2493-2505.e4.	6.4	123
9	Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). Journal of Proteomics, 2016, 143, 122-135.	2.4	81
10	Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E. coli Acetylome. Molecular and Cellular Proteomics, 2017, 16, 759-769.	3.8	80
11	Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting. Angewandte Chemie - International Edition, 2018, 57, 7369-7374.	13.8	76
12	Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nature Communications, 2018, 9, 4744.	12.8	63
13	Avoiding abundance bias in the functional annotation of posttranslationally modified proteins. Nature Methods, 2015, 12, 1003-1004.	19.0	60
14	mzGroupAnalyzer-Predicting Pathways and Novel Chemical Structures from Untargeted High-Throughput Metabolomics Data. PLoS ONE, 2014, 9, e96188.	2.5	58
15	Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ, 2016, 4, e2433.	2.0	56
16	Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula. Molecular and Cellular Proteomics, 2016, 15, 1921-1937.	3.8	50
17	Specifying RNA-Binding Regions in Proteins by Peptide Cross-Linking and Affinity Purification. Journal of Proteome Research, 2017, 16, 2762-2772.	3.7	37
18	Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach. Journal of Proteomics, 2015, 113, 143-153.	2.4	34

DAVID LYON

#	Article	IF	CITATIONS
19	Possible Role of Nutritional Priming for Early Salt and Drought Stress Responses in Medicago truncatula. Frontiers in Plant Science, 2012, 3, 285.	3.6	28
20	<i>Medicago truncatula</i> and <i>Glycine max</i> : Different Drought Tolerance and Similar Local Response of the Root Nodule Proteome. Journal of Proteome Research, 2015, 14, 5240-5251.	3.7	24
21	A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science. Methods in Molecular Biology, 2016, 1394, 233-243.	0.9	18
22	Mass Western for Absolute Quantification of Target Proteins and Considerations About the Instrument of Choice. Methods in Molecular Biology, 2014, 1072, 199-208.	0.9	12
23	Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars. Journal of Proteomics, 2016, 140, 13-23.	2.4	9
24	Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data. PLoS ONE, 2014, 9, e94692.	2.5	8
25	Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting. Angewandte Chemie, 2018, 130, 7491-7496.	2.0	1