
Robert Ivkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Scientific Reports, 2013, 3, 2887.	1.6	309
2	Physics of heat generation using magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 2013, 29, 715-729.	1.1	279
3	Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. International Journal of Hyperthermia, 2018, 34, 1316-1328.	1.1	260
4	Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology, 2009, 20, 395103.	1.3	227
5	Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews, 2020, 163-164, 65-83.	6.6	214
6	Heating technology for malignant tumors: a review. International Journal of Hyperthermia, 2020, 37, 711-741.	1.1	211
7	Colloid stability: The forces between charged surfaces in an electrolyte. Journal of Chemical Physics, 1991, 95, 520-532.	1.2	198
8	Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy. Clinical Cancer Research, 2005, 11, 7087s-7092s.	3.2	183
9	Application of High Amplitude Alternating Magnetic Fields for Heat Induction of Nanoparticles Localized in Cancer. Clinical Cancer Research, 2005, 11, 7093s-7103s.	3.2	166
10	Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. Journal of Magnetism and Magnetic Materials, 2007, 311, 181-186.	1.0	133
11	Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. Journal of Applied Physics, 2011, 109,	1.1	131
12	Size Invariance of Polyelectrolyte Dendrimers. Macromolecules, 2000, 33, 4172-4176.	2.2	121
13	Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer. Science Advances, 2020, 6, eaay1601.	4.7	107
14	Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. International Journal of Hyperthermia, 2015, 31, 359-374.	1.1	106
15	Internal Magnetic Structure of Nanoparticles Dominates Timeâ€Đependent Relaxation Processes in a Magnetic Field. Advanced Functional Materials, 2015, 25, 4300-4311.	7.8	100
16	NanoFerrite Particle Based Radioimmunonanoparticles: Binding Affinity and In Vivo Pharmacokinetics. Bioconjugate Chemistry, 2008, 19, 1211-1218.	1.8	99
17	Electrochemical and Neutron Reflectivity Characterization of Dodecyl Sulfate Adsorption and Aggregation at the Goldâ^ Water Interface. Langmuir, 2001, 17, 3355-3367.	1.6	96
18	The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles. Journal of Applied Physics, 2008, 103, .	1.1	89

#	Article	IF	CITATIONS
19	Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology, 2011, 22, 345101.	1.3	88
20	Thermal dosimetry predictive of efficacy of 1111n-ChL6 nanoparticle AMFinduced thermoablative therapy for human breast cancer in mice. Journal of Nuclear Medicine, 2007, 48, 437-44.	2.8	75
21	Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice. Nanomedicine, 2012, 7, 1697-1711.	1.7	71
22	Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. International Journal of Hyperthermia, 2014, 30, 192-200.	1.1	69
23	The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. Journal Physics D: Applied Physics, 2008, 41, 134020.	1.3	65
24	Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications. IEEE Transactions on Magnetics, 2012, 48, 47-52.	1.2	64
25	Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific Reports, 2017, 7, 6661.	1.6	64
26	Structure of Charged Dendrimer Solutions As Seen by Small-Angle Neutron Scattering. Macromolecules, 1999, 32, 5895-5900.	2.2	54
27	Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Scientific Reports, 2018, 8, 4916.	1.6	50
28	Magnetic nanoparticle hyperthermia: A new frontier in biology and medicine?. International Journal of Hyperthermia, 2013, 29, 703-705.	1.1	45
29	Adsorption of Poly(styrenesulfonate) to the Air Surface of Water by Neutron Reflectivity. Macromolecules, 2000, 33, 6126-6133.	2.2	44
30	Effect of Solvent Flow on a Polymer Brush:  A Neutron Reflectivity Study of the Brush Height and Chain Density Profile. Langmuir, 2001, 17, 2999-3005.	1.6	44
31	The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?. Nanomedicine, 2013, 8, 29-41.	1.7	44
32	Adsorption of Sodium Poly(styrenesulfonate) to the Air Surface of Water by Neutron and X-ray Reflectivity and Surface Tension Measurements:  Polymer Concentration Dependence. Macromolecules, 2002, 35, 9737-9747.	2.2	42
33	Structure within Thin Epoxy Films Revealed by Solvent Swelling:  A Neutron Reflectivity Study. Macromolecules, 1999, 32, 7932-7938.	2.2	40
34	Adsorption of Lysozyme onto the Silicon Oxide Surface Chemically Grafted with a Monolayer of Pentadecyl-1-ol. Langmuir, 2000, 16, 4999-5007.	1.6	40
35	An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. International Journal of Hyperthermia, 2018, 34, 373-381.	1.1	38
36	Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. International Journal of Hyperthermia, 2019, 36, 115-129.	1.1	36

#	Article	IF	CITATIONS
37	Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale, 2015, 7, 4432-4442.	2.8	35
38	Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia, 2019, 36, 47-63.	1.1	35
39	Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1779.	3.3	34
40	The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia. International Journal of Radiation Biology, 2006, 82, 549-559.	1.0	32
41	Electrochemical and Neutron Reflectivity Studies of Spontaneously Formed Amphiphilic Surfactant Bilayers at the Goldâ^'Solution Interface. Langmuir, 2000, 16, 9861-9870.	1.6	30
42	Neutron Reflectivity of Linearâ `'Dendritic Diblock Copolymer Monolayers. Macromolecules, 2002, 35, 231-238.	2.2	30
43	Enhanced magnetic properties and MRI performance of bi-magnetic core–shell nanoparticles. RSC Advances, 2016, 6, 77558-77568.	1.7	30
44	Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. Journal of Neurosurgery: Spine, 2014, 20, 740-750.	0.9	27
45	Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. International Journal of Hyperthermia, 2020, 37, 108-119.	1.1	27
46	Development and Screening of a Series of Antibodyâ€Conjugated and Silicaâ€Coated Iron Oxide Nanoparticles for Targeting the Prostateâ€Specific Membrane Antigen. ChemMedChem, 2014, 9, 1356-1360.	1.6	25
47	ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Nanotechnology, 2018, 29, 375101.	1.3	24
48	Method to reduce non-specific tissue heating of small animals in solenoid coils. International Journal of Hyperthermia, 2013, 29, 106-120.	1.1	22
49	Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study. International Journal of Hyperthermia, 2016, 32, 543-557.	1.1	20
50	Increased uptake of doxorubicin by cells undergoing heat stress does not explain its synergistic cytotoxicity with hyperthermia. International Journal of Hyperthermia, 2019, 36, 711-719.	1.1	20
51	Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis. Journal of Applied Physics, 2011, 109, 078513.	1.1	19
52	Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia. Biomedizinische Technik, 2015, 60, 491-504.	0.9	19
53	Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Scientific Reports, 2018, 8, 12706.	1.6	18
54	Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 2020, 37, 1-14.	1.1	18

#	Article	IF	CITATIONS
55	The polymerization of actin: Structural changes from small-angle neutron scattering. Journal of Chemical Physics, 2005, 123, 154904.	1.2	15
56	Calibration of a Quasi-Adiabatic Magneto-Thermal Calorimeter Used to Characterize Magnetic Nanoparticle Heating. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	15
57	Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor. Nanomedicine, 2014, 9, 2729-2743.	1.7	15
58	<i>Short Communication:</i> Nanoparticle Thermotherapy and External Beam Radiation Therapy for Human Prostate Cancer Cells. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 265-271.	0.7	14
59	The polymerization of actin: Study by small angle neutron scattering. Journal of Chemical Physics, 1998, 108, 5599-5607.	1.2	13
60	The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating. International Journal of Hyperthermia, 2020, 37, 100-107.	1.1	13
61	Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 2021, 38, 611-622.	1.1	12
62	The Effects of Temperature and Methanol Concentration on the Properties of Poly(N-isopropylacrylamide) at the Air/Solution Interface. Langmuir, 2001, 17, 5118-5120.	1.6	11
63	New iron-oxide particles for magnetic nanoparticle hyperthermia: an <i>in-vitro</i> and <i>in-vivo</i> pilot study. Proceedings of SPIE, 2013, , .	0.8	11
64	Inelastic Neutron Scattering from Filled Elastomers. Rubber Chemistry and Technology, 2000, 73, 847-863.	0.6	10
65	Pathways to chromothripsis. Cell Cycle, 2015, 14, 2886-2890.	1.3	10
66	Magnetic field generating inductor for cancer hyperthermia research. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30, 1626-1636.	0.5	9
67	Low-Dose CT Perfusion of the Liver Using Reconstruction of Difference. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 205-214.	2.7	9
68	Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. International Journal of Hyperthermia, 2020, 37, 59-75.	1.1	4
69	Bubble Magnetometry of Nanoparticle Heterogeneity and Interaction. Physical Review Applied, 2019, 11, .	1.5	1
70	Magnet-assisted Flow Cytometry of in vivo Tumors to Quantitate Cell-specific Responses to Magnetic Iron Oxide Nanoparticles. Bio-protocol, 2020, 10, e3822.	0.2	1
71	Bionized Nanoferrite Particles Alter the Course of Experimental Cryptococcus neoformans Pneumonia. Antimicrobial Agents and Chemotherapy, 2022, 66, e0239921.	1.4	1
72	Small-Angle Neutron Scattering of Bilayer Vesicles Made with Synthetic Phospholipids. Materials Research Society Symposia Proceedings, 1998, 550, 83.	0.1	0

#	ARTICLE	IF	CITATIONS
73	Neutron Reflectivity from the Monolayer of SAN Random Copolymer. Molecular Crystals and Liquid Crystals, 2001, 371, 211-214.	0.3	0
74	Nanoparticle Redistribution During Magnetic Nanoparticle Hyperthermia: Multi-Physics Porous Medium Model Analyses. , 2012, , .		0
75	EXTH-69. MAGNETIC HYPERTHERMIA THERAPY OF EXPERIMENTAL GLIOBLASTOMA IN COMBINATION WITH CHEMORADIATION. Neuro-Oncology, 2018, 20, vi99-vi100.	0.6	0
76	For HIPEC, synergistic effects of hyperthermia and doxorubicin are optimal when simultaneously combined. International Journal of Hyperthermia, 2020, 37, 346-348.	1.1	0
77	Computational Histopathological Analysis of Nanoparticle Distribution in Breast Cancer Models. FASEB Journal, 2018, 32, lb558.	0.2	0